|
@@ -235,7 +235,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
}
|
|
|
|
|
|
def test_pretrained_resnet50_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_resnet50', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_resnet50',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("resnet50", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
**self.imagenet_pretrained_ckpt_params)
|
|
@@ -244,7 +244,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet50"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_resnet50_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_resnet50_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_resnet50_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("resnet50", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
**self.imagenet_pretrained_ckpt_params, num_classes=5)
|
|
@@ -253,7 +253,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_resnet34_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_resnet34', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_resnet34',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("resnet34", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
@@ -263,7 +263,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet34"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_resnet34_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_resnet34_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_resnet34_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("resnet34", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
**self.imagenet_pretrained_ckpt_params, num_classes=5)
|
|
@@ -272,7 +272,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_resnet18_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_resnet18', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_resnet18',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("resnet18", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
@@ -282,7 +282,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet18"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_resnet18_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_resnet18_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_resnet18_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("resnet18", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
**self.imagenet_pretrained_ckpt_params, num_classes=5)
|
|
@@ -291,7 +291,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_regnetY800_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_regnetY800', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_regnetY800',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("regnetY800", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
@@ -301,7 +301,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY800"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_regnetY800_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_regnetY800_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_regnetY800_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("regnetY800", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
**self.imagenet_pretrained_ckpt_params, num_classes=5)
|
|
@@ -310,7 +310,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_regnetY600_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_regnetY600', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_regnetY600',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("regnetY600", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
@@ -320,7 +320,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY600"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_regnetY600_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_regnetY600_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_regnetY600_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("regnetY600", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
**self.imagenet_pretrained_ckpt_params, num_classes=5)
|
|
@@ -329,7 +329,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_regnetY400_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_regnetY400', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_regnetY400',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("regnetY400", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
@@ -339,7 +339,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY400"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_regnetY400_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_regnetY400_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_regnetY400_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("regnetY400", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
**self.imagenet_pretrained_ckpt_params, num_classes=5)
|
|
@@ -348,7 +348,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_regnetY200_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_regnetY200', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_regnetY200',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("regnetY200", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
@@ -358,7 +358,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY200"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_regnetY200_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_regnetY200_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_regnetY200_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("regnetY200", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
**self.imagenet_pretrained_ckpt_params, num_classes=5)
|
|
@@ -367,7 +367,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_repvgg_a0_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_repvgg_a0', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_repvgg_a0',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("repvgg_a0", arch_params=self.imagenet_pretrained_arch_params["repvgg_a0"],
|
|
@@ -377,7 +377,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["repvgg_a0"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_repvgg_a0_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_repvgg_a0_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_repvgg_a0_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("repvgg_a0", arch_params=self.imagenet_pretrained_arch_params["repvgg_a0"],
|
|
|
**self.imagenet_pretrained_ckpt_params, num_classes=5)
|
|
@@ -386,7 +386,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_regseg48_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_regseg48', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_regseg48',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("regseg48", arch_params=self.cityscapes_pretrained_arch_params["regseg48"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -396,7 +396,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["regseg48"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_regseg48_cityscapes(self):
|
|
|
- trainer = Trainer('regseg48_cityscapes_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('regseg48_cityscapes_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("regseg48", arch_params=self.cityscapes_pretrained_arch_params["regseg48"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -405,7 +405,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
training_params=self.regseg_transfer_segmentation_train_params)
|
|
|
|
|
|
def test_pretrained_ddrnet23_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_ddrnet23', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_ddrnet23',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("ddrnet_23", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -415,7 +415,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["ddrnet_23"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_ddrnet23_slim_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_ddrnet23_slim', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_ddrnet23_slim',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("ddrnet_23_slim", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -425,7 +425,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["ddrnet_23_slim"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_ddrnet23_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_ddrnet23_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_ddrnet23_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("ddrnet_23", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -434,7 +434,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_segmentation_dataset)
|
|
|
|
|
|
def test_transfer_learning_ddrnet23_slim_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_ddrnet23_slim_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_ddrnet23_slim_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("ddrnet_23_slim", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -443,7 +443,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_segmentation_dataset)
|
|
|
|
|
|
def test_pretrained_coco_segmentation_subclass_pretrained_shelfnet34_lw(self):
|
|
|
- trainer = Trainer('coco_segmentation_subclass_pretrained_shelfnet34_lw', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('coco_segmentation_subclass_pretrained_shelfnet34_lw',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("shelfnet34_lw",
|
|
|
arch_params=self.coco_segmentation_subclass_pretrained_arch_params["shelfnet34_lw"],
|
|
@@ -453,7 +453,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.coco_segmentation_subclass_pretrained_mious["shelfnet34_lw"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_efficientnet_b0_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_efficientnet_b0', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_efficientnet_b0',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("efficientnet_b0", arch_params=self.imagenet_pretrained_arch_params["efficientnet_b0"],
|
|
@@ -463,7 +463,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["efficientnet_b0"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_efficientnet_b0_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_efficientnet_b0_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_efficientnet_b0_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("efficientnet_b0", arch_params=self.imagenet_pretrained_arch_params["efficientnet_b0"],
|
|
@@ -473,7 +473,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_ssd_lite_mobilenet_v2_coco(self):
|
|
|
- trainer = Trainer('coco_ssd_lite_mobilenet_v2', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('coco_ssd_lite_mobilenet_v2',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("ssd_lite_mobilenet_v2",
|
|
|
arch_params=self.coco_pretrained_arch_params["ssd_lite_mobilenet_v2"],
|
|
@@ -485,7 +485,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
|
|
|
def test_transfer_learning_ssd_lite_mobilenet_v2_coco(self):
|
|
|
trainer = Trainer('coco_ssd_lite_mobilenet_v2_transfer_learning',
|
|
|
- model_checkpoints_location='local', multi_gpu=MultiGPUMode.OFF)
|
|
|
+ multi_gpu=MultiGPUMode.OFF)
|
|
|
transfer_arch_params = self.coco_pretrained_arch_params['ssd_lite_mobilenet_v2'].copy()
|
|
|
transfer_arch_params['num_classes'] = 5
|
|
|
model = models.get("ssd_lite_mobilenet_v2",
|
|
@@ -496,11 +496,10 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_detection_dataset)
|
|
|
|
|
|
def test_pretrained_ssd_mobilenet_v1_coco(self):
|
|
|
- trainer = Trainer('coco_ssd_mobilenet_v1', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('coco_ssd_mobilenet_v1',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("ssd_mobilenet_v1",
|
|
|
- arch_params=self.coco_pretrained_arch_params["coco_ssd_mobilenet_v1"],
|
|
|
- **self.coco_pretrained_ckpt_params)
|
|
|
+ arch_params=self.coco_pretrained_arch_params["coco_ssd_mobilenet_v1"], **self.coco_pretrained_ckpt_params)
|
|
|
ssd_post_prediction_callback = SSDPostPredictCallback()
|
|
|
res = trainer.test(model=model, test_loader=self.coco_dataset['ssd_mobilenet'],
|
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=ssd_post_prediction_callback,
|
|
@@ -509,7 +508,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["coco_ssd_mobilenet_v1"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_s_coco(self):
|
|
|
- trainer = Trainer('yolox_s', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('yolox_s',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("yolox_s",
|
|
@@ -521,7 +520,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_s"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_m_coco(self):
|
|
|
- trainer = Trainer('yolox_m', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('yolox_m',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("yolox_m",
|
|
|
**self.coco_pretrained_ckpt_params)
|
|
@@ -532,7 +531,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_m"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_l_coco(self):
|
|
|
- trainer = Trainer('yolox_l', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('yolox_l',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("yolox_l",
|
|
|
**self.coco_pretrained_ckpt_params)
|
|
@@ -543,7 +542,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_l"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_n_coco(self):
|
|
|
- trainer = Trainer('yolox_n', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('yolox_n',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("yolox_n",
|
|
@@ -555,7 +554,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_n"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_t_coco(self):
|
|
|
- trainer = Trainer('yolox_t', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('yolox_t',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("yolox_t",
|
|
|
**self.coco_pretrained_ckpt_params)
|
|
@@ -567,7 +566,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
|
|
|
def test_transfer_learning_yolox_n_coco(self):
|
|
|
trainer = Trainer('test_transfer_learning_yolox_n_coco',
|
|
|
- model_checkpoints_location='local',
|
|
|
+
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("yolox_n", **self.coco_pretrained_ckpt_params, num_classes=5)
|
|
|
trainer.train(model=model, training_params=self.transfer_detection_train_params_yolox,
|
|
@@ -576,7 +575,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
|
|
|
def test_transfer_learning_mobilenet_v3_large_imagenet(self):
|
|
|
trainer = Trainer('imagenet_pretrained_mobilenet_v3_large_transfer_learning',
|
|
|
- model_checkpoints_location='local',
|
|
|
+
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("mobilenet_v3_large", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
@@ -586,7 +585,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_mobilenet_v3_large_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_mobilenet_v3_large', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_mobilenet_v3_large',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("mobilenet_v3_large", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
@@ -597,7 +596,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
|
|
|
def test_transfer_learning_mobilenet_v3_small_imagenet(self):
|
|
|
trainer = Trainer('imagenet_pretrained_mobilenet_v3_small_transfer_learning',
|
|
|
- model_checkpoints_location='local',
|
|
|
+
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("mobilenet_v3_small", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
@@ -607,7 +606,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_mobilenet_v3_small_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_mobilenet_v3_small', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_mobilenet_v3_small',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("mobilenet_v3_small", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
@@ -618,7 +617,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
|
|
|
def test_transfer_learning_mobilenet_v2_imagenet(self):
|
|
|
trainer = Trainer('imagenet_pretrained_mobilenet_v2_transfer_learning',
|
|
|
- model_checkpoints_location='local',
|
|
|
+
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("mobilenet_v2", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
@@ -628,7 +627,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_mobilenet_v2_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_mobilenet_v2', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_mobilenet_v2',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("mobilenet_v2", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
@@ -638,7 +637,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["mobilenet_v2"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_stdc1_seg50_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_stdc1_seg50', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_stdc1_seg50',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("stdc1_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -648,7 +647,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["stdc1_seg50"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_stdc1_seg50_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_stdc1_seg50_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_stdc1_seg50_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("stdc1_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
**self.cityscapes_pretrained_ckpt_params, num_classes=5)
|
|
@@ -657,7 +656,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_segmentation_dataset)
|
|
|
|
|
|
def test_pretrained_stdc1_seg75_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_stdc1_seg75', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_stdc1_seg75',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("stdc1_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -667,7 +666,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["stdc1_seg75"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_stdc1_seg75_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_stdc1_seg75_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_stdc1_seg75_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("stdc1_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
**self.cityscapes_pretrained_ckpt_params, num_classes=5)
|
|
@@ -676,7 +675,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_segmentation_dataset)
|
|
|
|
|
|
def test_pretrained_stdc2_seg50_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_stdc2_seg50', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_stdc2_seg50',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("stdc2_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -686,7 +685,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["stdc2_seg50"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_stdc2_seg50_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_stdc2_seg50_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_stdc2_seg50_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("stdc2_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
**self.cityscapes_pretrained_ckpt_params, num_classes=5)
|
|
@@ -695,7 +694,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_segmentation_dataset)
|
|
|
|
|
|
def test_pretrained_stdc2_seg75_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_stdc2_seg75', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_stdc2_seg75',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("stdc2_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -705,7 +704,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["stdc2_seg75"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_stdc2_seg75_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_stdc2_seg75_transfer_learning', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_stdc2_seg75_transfer_learning',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("stdc2_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
**self.cityscapes_pretrained_ckpt_params, num_classes=5)
|
|
@@ -715,7 +714,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
|
|
|
def test_transfer_learning_vit_base_imagenet21k(self):
|
|
|
trainer = Trainer('imagenet21k_pretrained_vit_base',
|
|
|
- model_checkpoints_location='local',
|
|
|
+
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("vit_base", arch_params=self.imagenet_pretrained_arch_params["vit_base"],
|
|
@@ -726,7 +725,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
|
|
|
def test_transfer_learning_vit_large_imagenet21k(self):
|
|
|
trainer = Trainer('imagenet21k_pretrained_vit_large',
|
|
|
- model_checkpoints_location='local',
|
|
|
+
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("vit_large", arch_params=self.imagenet_pretrained_arch_params["vit_base"],
|
|
@@ -736,7 +735,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_vit_base_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_vit_base', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_vit_base',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("vit_base", arch_params=self.imagenet_pretrained_arch_params["vit_base"],
|
|
|
**self.imagenet_pretrained_ckpt_params)
|
|
@@ -746,7 +745,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["vit_base"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_vit_large_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_vit_large', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_vit_large',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("vit_large", arch_params=self.imagenet_pretrained_arch_params["vit_base"],
|
|
|
**self.imagenet_pretrained_ckpt_params)
|
|
@@ -756,7 +755,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["vit_large"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_beit_base_imagenet(self):
|
|
|
- trainer = Trainer('imagenet_pretrained_beit_base', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('imagenet_pretrained_beit_base',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("beit_base_patch16_224", arch_params=self.imagenet_pretrained_arch_params["vit_base"],
|
|
|
**self.imagenet_pretrained_ckpt_params)
|
|
@@ -767,7 +766,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
|
|
|
def test_transfer_learning_beit_base_imagenet(self):
|
|
|
trainer = Trainer('test_transfer_learning_beit_base_imagenet',
|
|
|
- model_checkpoints_location='local',
|
|
|
+
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
|
|
|
model = models.get("beit_base_patch16_224", arch_params=self.imagenet_pretrained_arch_params["vit_base"],
|
|
@@ -777,7 +776,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
valid_loader=self.transfer_classification_dataloader)
|
|
|
|
|
|
def test_pretrained_pplite_t_seg50_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_pplite_t_seg50', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_pplite_t_seg50',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("pp_lite_t_seg50", arch_params=self.cityscapes_pretrained_arch_params["pplite_seg"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -789,7 +788,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["pp_lite_t_seg50"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_pplite_t_seg75_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_pplite_t_seg75', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_pplite_t_seg75',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("pp_lite_t_seg75", arch_params=self.cityscapes_pretrained_arch_params["pplite_seg"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -801,7 +800,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["pp_lite_t_seg75"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_pplite_b_seg50_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_pplite_b_seg50', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_pplite_b_seg50',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("pp_lite_b_seg50", arch_params=self.cityscapes_pretrained_arch_params["pplite_seg"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|
|
@@ -813,7 +812,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
|
self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["pp_lite_b_seg50"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_pplite_b_seg75_cityscapes(self):
|
|
|
- trainer = Trainer('cityscapes_pretrained_pplite_b_seg75', model_checkpoints_location='local',
|
|
|
+ trainer = Trainer('cityscapes_pretrained_pplite_b_seg75',
|
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
|
model = models.get("pp_lite_b_seg75", arch_params=self.cityscapes_pretrained_arch_params["pplite_seg"],
|
|
|
**self.cityscapes_pretrained_ckpt_params)
|