Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

coco2017_yolox.yaml 2.8 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
  1. # YoloX Detection training on CoCo2017 Dataset:
  2. # YoloX trained in 640x640
  3. # Checkpoints + tensorboards: https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/
  4. # Recipe runs with batch size = 16 X 8 gpus = 128.
  5. # Instructions:
  6. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  7. # 1. Move to the project root (where you will find the ReadMe and src folder)
  8. # 2. Run the command you want:
  9. # yolox_n: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_n
  10. # yolox_t: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_t
  11. # yolox_s: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_s
  12. # yolox_m: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_m
  13. # yolox_l: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_l
  14. # yolox_x: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_x
  15. #
  16. # Training times and accuracies (mAP@0.5-0.95 (COCO API, confidence 0.001, IoU threshold 0.6, test on 640x640 images):
  17. # yolox_n: 1d 16h 33m 9s on 8 NVIDIA GeForce RTX 3090, mAP: 26.77
  18. # yolox_t: 20h 43m 37s on 8 NVIDIA RTX A5000, mAP: 37.18
  19. # yolox_s: 1d 17h 40m 30s on 8 NVIDIA RTX A5000, mAP: 40.47
  20. # yolox_m: 1d 22h 23m 43s on 8 NVIDIA GeForce RTX 3090, mAP: 46.40
  21. # yolox_l: 2d 14h 11m 41s on 8 NVIDIA GeForce RTX 3090, mAP: 49.25
  22. #
  23. # Using FAST LOSS
  24. # Training times and accuracies (mAP@0.5-0.95 (COCO API, confidence 0.001, IoU threshold 0.6, test on 640x640 images):
  25. # yolox_n: COMING SOON
  26. # yolox_t: COMING SOON
  27. # yolox_s: 18h 23m 4s on 8 NVIDIA RTX A5000, mAP: 40.55
  28. # yolox_m: COMING SOON
  29. # yolox_l: COMING SOON
  30. defaults:
  31. - training_hyperparams: coco2017_yolox_train_params
  32. - dataset_params: coco_detection_dataset_params
  33. - arch_params: yolox_s_arch_params
  34. - checkpoint_params: default_checkpoint_params
  35. train_dataloader: coco2017_train
  36. val_dataloader: coco2017_val
  37. model_checkpoints_location: local
  38. load_checkpoint: False
  39. resume: False
  40. training_hyperparams:
  41. resume: ${resume}
  42. architecture: yolox_s
  43. multi_gpu: DDP
  44. num_gpus: 8
  45. experiment_suffix: res${dataset_params.train_dataset_params.input_dim}
  46. experiment_name: ${architecture}_coco2017_${experiment_suffix}
  47. ckpt_root_dir:
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...