Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

pretrained_models_unit_test.py 1.9 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
  1. import unittest
  2. import super_gradients
  3. from super_gradients.training import MultiGPUMode, models
  4. from super_gradients.training import Trainer
  5. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  6. from super_gradients.training.metrics import Accuracy
  7. import os
  8. import shutil
  9. class PretrainedModelsUnitTest(unittest.TestCase):
  10. def setUp(self) -> None:
  11. super_gradients.init_trainer()
  12. self.imagenet_pretrained_models = ["resnet50", "repvgg_a0", "regnetY800"]
  13. def test_pretrained_resnet50_imagenet(self):
  14. trainer = Trainer('imagenet_pretrained_resnet50_unit_test',
  15. multi_gpu=MultiGPUMode.OFF)
  16. model = models.get("resnet50", pretrained_weights="imagenet")
  17. trainer.test(model=model, test_loader=classification_test_dataloader(), test_metrics_list=[Accuracy()],
  18. metrics_progress_verbose=True)
  19. def test_pretrained_regnetY800_imagenet(self):
  20. trainer = Trainer('imagenet_pretrained_regnetY800_unit_test',
  21. multi_gpu=MultiGPUMode.OFF)
  22. model = models.get("regnetY800", pretrained_weights="imagenet")
  23. trainer.test(model=model, test_loader=classification_test_dataloader(), test_metrics_list=[Accuracy()],
  24. metrics_progress_verbose=True)
  25. def test_pretrained_repvgg_a0_imagenet(self):
  26. trainer = Trainer('imagenet_pretrained_repvgg_a0_unit_test',
  27. multi_gpu=MultiGPUMode.OFF)
  28. model = models.get("repvgg_a0", pretrained_weights="imagenet", arch_params={"build_residual_branches": True})
  29. trainer.test(model=model, test_loader=classification_test_dataloader(), test_metrics_list=[Accuracy()],
  30. metrics_progress_verbose=True)
  31. def tearDown(self) -> None:
  32. if os.path.exists('~/.cache/torch/hub/'):
  33. shutil.rmtree('~/.cache/torch/hub/')
  34. if __name__ == '__main__':
  35. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...