Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

weight_averaging_utils.py 6.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  1. import os
  2. import torch
  3. import numpy as np
  4. import pkg_resources
  5. from super_gradients.training import utils as core_utils
  6. from super_gradients.training.utils.utils import move_state_dict_to_device
  7. class ModelWeightAveraging:
  8. """
  9. Utils class for managing the averaging of the best several snapshots into a single model.
  10. A snapshot dictionary file and the average model will be saved / updated at every epoch and evaluated only when
  11. training is completed. The snapshot file will only be deleted upon completing the training.
  12. The snapshot dict will be managed on cpu.
  13. """
  14. def __init__(self, ckpt_dir,
  15. greater_is_better,
  16. source_ckpt_folder_name=None, metric_to_watch='acc',
  17. metric_idx=1, load_checkpoint=False,
  18. number_of_models_to_average=10,
  19. ):
  20. """
  21. Init the ModelWeightAveraging
  22. :param checkpoint_dir: the directory where the checkpoints are saved
  23. :param metric_to_watch: monitoring loss or acc, will be identical to that which determines best_model
  24. :param metric_idx:
  25. :param load_checkpoint: whether to load pre-existing snapshot dict.
  26. :param number_of_models_to_average: number of models to average
  27. """
  28. if source_ckpt_folder_name is not None:
  29. source_ckpt_file = os.path.join(source_ckpt_folder_name, 'averaging_snapshots.pkl')
  30. source_ckpt_file = pkg_resources.resource_filename('checkpoints', source_ckpt_file)
  31. self.averaging_snapshots_file = os.path.join(ckpt_dir, 'averaging_snapshots.pkl')
  32. self.number_of_models_to_average = number_of_models_to_average
  33. self.metric_to_watch = metric_to_watch
  34. self.metric_idx = metric_idx
  35. self.greater_is_better = greater_is_better
  36. # if continuing training, copy previous snapshot dict if exist
  37. if load_checkpoint and source_ckpt_folder_name is not None and os.path.isfile(source_ckpt_file):
  38. averaging_snapshots_dict = core_utils.load_checkpoint(ckpt_destination_dir=ckpt_dir,
  39. source_ckpt_folder_name=source_ckpt_folder_name,
  40. ckpt_filename="averaging_snapshots.pkl",
  41. load_weights_only=False,
  42. overwrite_local_ckpt=True)
  43. else:
  44. averaging_snapshots_dict = {'snapshot' + str(i): None for i in range(self.number_of_models_to_average)}
  45. # if metric to watch is acc, hold a zero array, if loss hold inf array
  46. if self.greater_is_better:
  47. averaging_snapshots_dict['snapshots_metric'] = -1 * np.inf * np.ones(self.number_of_models_to_average)
  48. else:
  49. averaging_snapshots_dict['snapshots_metric'] = np.inf * np.ones(self.number_of_models_to_average)
  50. torch.save(averaging_snapshots_dict, self.averaging_snapshots_file)
  51. def update_snapshots_dict(self, model, validation_results_tuple):
  52. """
  53. Update the snapshot dict and returns the updated average model for saving
  54. :param model: the latest model
  55. :param validation_results_tuple: performance of the latest model
  56. """
  57. averaging_snapshots_dict = self._get_averaging_snapshots_dict()
  58. # IF CURRENT MODEL IS BETTER, TAKING HIS PLACE IN ACC LIST AND OVERWRITE THE NEW AVERAGE
  59. require_update, update_ind = self._is_better(averaging_snapshots_dict, validation_results_tuple)
  60. if require_update:
  61. # moving state dict to cpu
  62. new_sd = model.state_dict()
  63. new_sd = move_state_dict_to_device(new_sd, 'cpu')
  64. averaging_snapshots_dict['snapshot' + str(update_ind)] = new_sd
  65. averaging_snapshots_dict['snapshots_metric'][update_ind] = validation_results_tuple[self.metric_idx]
  66. return averaging_snapshots_dict
  67. def get_average_model(self, model, validation_results_tuple=None):
  68. """
  69. Returns the averaged model
  70. :param model: will be used to determine arch
  71. :param validation_results_tuple: if provided, will update the average model before returning
  72. :param target_device: if provided, return sd on target device
  73. """
  74. # If validation tuple is provided, update the average model
  75. if validation_results_tuple is not None:
  76. averaging_snapshots_dict = self.update_snapshots_dict(model, validation_results_tuple)
  77. else:
  78. averaging_snapshots_dict = self._get_averaging_snapshots_dict()
  79. torch.save(averaging_snapshots_dict, self.averaging_snapshots_file)
  80. average_model_sd = averaging_snapshots_dict['snapshot0']
  81. for n_model in range(1, self.number_of_models_to_average):
  82. if averaging_snapshots_dict['snapshot' + str(n_model)] is not None:
  83. net_sd = averaging_snapshots_dict['snapshot' + str(n_model)]
  84. # USING MOVING AVERAGE
  85. for key in average_model_sd:
  86. average_model_sd[key] = torch.true_divide(
  87. average_model_sd[key] * n_model + net_sd[key],
  88. (n_model + 1))
  89. return average_model_sd
  90. def cleanup(self):
  91. """
  92. Delete snapshot file when reaching the last epoch
  93. """
  94. os.remove(self.averaging_snapshots_file)
  95. def _is_better(self, averaging_snapshots_dict, validation_results_tuple):
  96. """
  97. Determines if the new model is better according to the specified metrics
  98. :param averaging_snapshots_dict: snapshot dict
  99. :param validation_results_tuple: latest model performance
  100. """
  101. snapshot_metric_array = averaging_snapshots_dict['snapshots_metric']
  102. val = validation_results_tuple[self.metric_idx]
  103. if self.greater_is_better:
  104. update_ind = np.argmin(snapshot_metric_array)
  105. else:
  106. update_ind = np.argmax(snapshot_metric_array)
  107. if (self.greater_is_better and val > snapshot_metric_array[update_ind]) or (
  108. not self.greater_is_better and val < snapshot_metric_array[update_ind]):
  109. return True, update_ind
  110. return False, None
  111. def _get_averaging_snapshots_dict(self):
  112. return torch.load(self.averaging_snapshots_file)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...