1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
- import os
- from pathlib import Path
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
- from torch import Tensor
- from .folder import find_classes, make_dataset
- from .video_utils import VideoClips
- from .vision import VisionDataset
- class UCF101(VisionDataset):
- """
- `UCF101 <https://www.crcv.ucf.edu/data/UCF101.php>`_ dataset.
- UCF101 is an action recognition video dataset.
- This dataset consider every video as a collection of video clips of fixed size, specified
- by ``frames_per_clip``, where the step in frames between each clip is given by
- ``step_between_clips``. The dataset itself can be downloaded from the dataset website;
- annotations that ``annotation_path`` should be pointing to can be downloaded from `here
- <https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip>`_.
- To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
- and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
- elements will come from video 1, and the next three elements from video 2.
- Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
- frames in a video might be present.
- Internally, it uses a VideoClips object to handle clip creation.
- Args:
- root (str or ``pathlib.Path``): Root directory of the UCF101 Dataset.
- annotation_path (str): path to the folder containing the split files;
- see docstring above for download instructions of these files
- frames_per_clip (int): number of frames in a clip.
- step_between_clips (int, optional): number of frames between each clip.
- fold (int, optional): which fold to use. Should be between 1 and 3.
- train (bool, optional): if ``True``, creates a dataset from the train split,
- otherwise from the ``test`` split.
- transform (callable, optional): A function/transform that takes in a TxHxWxC video
- and returns a transformed version.
- output_format (str, optional): The format of the output video tensors (before transforms).
- Can be either "THWC" (default) or "TCHW".
- Returns:
- tuple: A 3-tuple with the following entries:
- - video (Tensor[T, H, W, C] or Tensor[T, C, H, W]): The `T` video frames
- - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
- and `L` is the number of points
- - label (int): class of the video clip
- """
- def __init__(
- self,
- root: Union[str, Path],
- annotation_path: str,
- frames_per_clip: int,
- step_between_clips: int = 1,
- frame_rate: Optional[int] = None,
- fold: int = 1,
- train: bool = True,
- transform: Optional[Callable] = None,
- _precomputed_metadata: Optional[Dict[str, Any]] = None,
- num_workers: int = 1,
- _video_width: int = 0,
- _video_height: int = 0,
- _video_min_dimension: int = 0,
- _audio_samples: int = 0,
- output_format: str = "THWC",
- ) -> None:
- super().__init__(root)
- if not 1 <= fold <= 3:
- raise ValueError(f"fold should be between 1 and 3, got {fold}")
- extensions = ("avi",)
- self.fold = fold
- self.train = train
- self.classes, class_to_idx = find_classes(self.root)
- self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None)
- video_list = [x[0] for x in self.samples]
- video_clips = VideoClips(
- video_list,
- frames_per_clip,
- step_between_clips,
- frame_rate,
- _precomputed_metadata,
- num_workers=num_workers,
- _video_width=_video_width,
- _video_height=_video_height,
- _video_min_dimension=_video_min_dimension,
- _audio_samples=_audio_samples,
- output_format=output_format,
- )
- # we bookkeep the full version of video clips because we want to be able
- # to return the metadata of full version rather than the subset version of
- # video clips
- self.full_video_clips = video_clips
- self.indices = self._select_fold(video_list, annotation_path, fold, train)
- self.video_clips = video_clips.subset(self.indices)
- self.transform = transform
- @property
- def metadata(self) -> Dict[str, Any]:
- return self.full_video_clips.metadata
- def _select_fold(self, video_list: List[str], annotation_path: str, fold: int, train: bool) -> List[int]:
- name = "train" if train else "test"
- name = f"{name}list{fold:02d}.txt"
- f = os.path.join(annotation_path, name)
- selected_files = set()
- with open(f) as fid:
- data = fid.readlines()
- data = [x.strip().split(" ")[0] for x in data]
- data = [os.path.join(self.root, *x.split("/")) for x in data]
- selected_files.update(data)
- indices = [i for i in range(len(video_list)) if video_list[i] in selected_files]
- return indices
- def __len__(self) -> int:
- return self.video_clips.num_clips()
- def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
- video, audio, info, video_idx = self.video_clips.get_clip(idx)
- label = self.samples[self.indices[video_idx]][1]
- if self.transform is not None:
- video = self.transform(video)
- return video, audio, label
|