1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
- import os.path
- from pathlib import Path
- from typing import Any, Callable, Optional, Tuple, Union
- import numpy as np
- from PIL import Image
- from .utils import check_integrity, download_url, verify_str_arg
- from .vision import VisionDataset
- class SVHN(VisionDataset):
- """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset.
- Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset,
- we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which
- expect the class labels to be in the range `[0, C-1]`
- .. warning::
- This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format.
- Args:
- root (str or ``pathlib.Path``): Root directory of the dataset where the data is stored.
- split (string): One of {'train', 'test', 'extra'}.
- Accordingly dataset is selected. 'extra' is Extra training set.
- transform (callable, optional): A function/transform that takes in a PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): If true, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- split_list = {
- "train": [
- "http://ufldl.stanford.edu/housenumbers/train_32x32.mat",
- "train_32x32.mat",
- "e26dedcc434d2e4c54c9b2d4a06d8373",
- ],
- "test": [
- "http://ufldl.stanford.edu/housenumbers/test_32x32.mat",
- "test_32x32.mat",
- "eb5a983be6a315427106f1b164d9cef3",
- ],
- "extra": [
- "http://ufldl.stanford.edu/housenumbers/extra_32x32.mat",
- "extra_32x32.mat",
- "a93ce644f1a588dc4d68dda5feec44a7",
- ],
- }
- def __init__(
- self,
- root: Union[str, Path],
- split: str = "train",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.split = verify_str_arg(split, "split", tuple(self.split_list.keys()))
- self.url = self.split_list[split][0]
- self.filename = self.split_list[split][1]
- self.file_md5 = self.split_list[split][2]
- if download:
- self.download()
- if not self._check_integrity():
- raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
- # import here rather than at top of file because this is
- # an optional dependency for torchvision
- import scipy.io as sio
- # reading(loading) mat file as array
- loaded_mat = sio.loadmat(os.path.join(self.root, self.filename))
- self.data = loaded_mat["X"]
- # loading from the .mat file gives an np.ndarray of type np.uint8
- # converting to np.int64, so that we have a LongTensor after
- # the conversion from the numpy array
- # the squeeze is needed to obtain a 1D tensor
- self.labels = loaded_mat["y"].astype(np.int64).squeeze()
- # the svhn dataset assigns the class label "10" to the digit 0
- # this makes it inconsistent with several loss functions
- # which expect the class labels to be in the range [0, C-1]
- np.place(self.labels, self.labels == 10, 0)
- self.data = np.transpose(self.data, (3, 2, 0, 1))
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: (image, target) where target is index of the target class.
- """
- img, target = self.data[index], int(self.labels[index])
- # doing this so that it is consistent with all other datasets
- # to return a PIL Image
- img = Image.fromarray(np.transpose(img, (1, 2, 0)))
- if self.transform is not None:
- img = self.transform(img)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return len(self.data)
- def _check_integrity(self) -> bool:
- root = self.root
- md5 = self.split_list[self.split][2]
- fpath = os.path.join(root, self.filename)
- return check_integrity(fpath, md5)
- def download(self) -> None:
- md5 = self.split_list[self.split][2]
- download_url(self.url, self.root, self.filename, md5)
- def extra_repr(self) -> str:
- return "Split: {split}".format(**self.__dict__)
|