1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
- import json
- import os
- from collections import namedtuple
- from pathlib import Path
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
- from PIL import Image
- from .utils import extract_archive, iterable_to_str, verify_str_arg
- from .vision import VisionDataset
- class Cityscapes(VisionDataset):
- """`Cityscapes <http://www.cityscapes-dataset.com/>`_ Dataset.
- Args:
- root (str or ``pathlib.Path``): Root directory of dataset where directory ``leftImg8bit``
- and ``gtFine`` or ``gtCoarse`` are located.
- split (string, optional): The image split to use, ``train``, ``test`` or ``val`` if mode="fine"
- otherwise ``train``, ``train_extra`` or ``val``
- mode (string, optional): The quality mode to use, ``fine`` or ``coarse``
- target_type (string or list, optional): Type of target to use, ``instance``, ``semantic``, ``polygon``
- or ``color``. Can also be a list to output a tuple with all specified target types.
- transform (callable, optional): A function/transform that takes in a PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- transforms (callable, optional): A function/transform that takes input sample and its target as entry
- and returns a transformed version.
- Examples:
- Get semantic segmentation target
- .. code-block:: python
- dataset = Cityscapes('./data/cityscapes', split='train', mode='fine',
- target_type='semantic')
- img, smnt = dataset[0]
- Get multiple targets
- .. code-block:: python
- dataset = Cityscapes('./data/cityscapes', split='train', mode='fine',
- target_type=['instance', 'color', 'polygon'])
- img, (inst, col, poly) = dataset[0]
- Validate on the "coarse" set
- .. code-block:: python
- dataset = Cityscapes('./data/cityscapes', split='val', mode='coarse',
- target_type='semantic')
- img, smnt = dataset[0]
- """
- # Based on https://github.com/mcordts/cityscapesScripts
- CityscapesClass = namedtuple(
- "CityscapesClass",
- ["name", "id", "train_id", "category", "category_id", "has_instances", "ignore_in_eval", "color"],
- )
- classes = [
- CityscapesClass("unlabeled", 0, 255, "void", 0, False, True, (0, 0, 0)),
- CityscapesClass("ego vehicle", 1, 255, "void", 0, False, True, (0, 0, 0)),
- CityscapesClass("rectification border", 2, 255, "void", 0, False, True, (0, 0, 0)),
- CityscapesClass("out of roi", 3, 255, "void", 0, False, True, (0, 0, 0)),
- CityscapesClass("static", 4, 255, "void", 0, False, True, (0, 0, 0)),
- CityscapesClass("dynamic", 5, 255, "void", 0, False, True, (111, 74, 0)),
- CityscapesClass("ground", 6, 255, "void", 0, False, True, (81, 0, 81)),
- CityscapesClass("road", 7, 0, "flat", 1, False, False, (128, 64, 128)),
- CityscapesClass("sidewalk", 8, 1, "flat", 1, False, False, (244, 35, 232)),
- CityscapesClass("parking", 9, 255, "flat", 1, False, True, (250, 170, 160)),
- CityscapesClass("rail track", 10, 255, "flat", 1, False, True, (230, 150, 140)),
- CityscapesClass("building", 11, 2, "construction", 2, False, False, (70, 70, 70)),
- CityscapesClass("wall", 12, 3, "construction", 2, False, False, (102, 102, 156)),
- CityscapesClass("fence", 13, 4, "construction", 2, False, False, (190, 153, 153)),
- CityscapesClass("guard rail", 14, 255, "construction", 2, False, True, (180, 165, 180)),
- CityscapesClass("bridge", 15, 255, "construction", 2, False, True, (150, 100, 100)),
- CityscapesClass("tunnel", 16, 255, "construction", 2, False, True, (150, 120, 90)),
- CityscapesClass("pole", 17, 5, "object", 3, False, False, (153, 153, 153)),
- CityscapesClass("polegroup", 18, 255, "object", 3, False, True, (153, 153, 153)),
- CityscapesClass("traffic light", 19, 6, "object", 3, False, False, (250, 170, 30)),
- CityscapesClass("traffic sign", 20, 7, "object", 3, False, False, (220, 220, 0)),
- CityscapesClass("vegetation", 21, 8, "nature", 4, False, False, (107, 142, 35)),
- CityscapesClass("terrain", 22, 9, "nature", 4, False, False, (152, 251, 152)),
- CityscapesClass("sky", 23, 10, "sky", 5, False, False, (70, 130, 180)),
- CityscapesClass("person", 24, 11, "human", 6, True, False, (220, 20, 60)),
- CityscapesClass("rider", 25, 12, "human", 6, True, False, (255, 0, 0)),
- CityscapesClass("car", 26, 13, "vehicle", 7, True, False, (0, 0, 142)),
- CityscapesClass("truck", 27, 14, "vehicle", 7, True, False, (0, 0, 70)),
- CityscapesClass("bus", 28, 15, "vehicle", 7, True, False, (0, 60, 100)),
- CityscapesClass("caravan", 29, 255, "vehicle", 7, True, True, (0, 0, 90)),
- CityscapesClass("trailer", 30, 255, "vehicle", 7, True, True, (0, 0, 110)),
- CityscapesClass("train", 31, 16, "vehicle", 7, True, False, (0, 80, 100)),
- CityscapesClass("motorcycle", 32, 17, "vehicle", 7, True, False, (0, 0, 230)),
- CityscapesClass("bicycle", 33, 18, "vehicle", 7, True, False, (119, 11, 32)),
- CityscapesClass("license plate", -1, -1, "vehicle", 7, False, True, (0, 0, 142)),
- ]
- def __init__(
- self,
- root: Union[str, Path],
- split: str = "train",
- mode: str = "fine",
- target_type: Union[List[str], str] = "instance",
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- transforms: Optional[Callable] = None,
- ) -> None:
- super().__init__(root, transforms, transform, target_transform)
- self.mode = "gtFine" if mode == "fine" else "gtCoarse"
- self.images_dir = os.path.join(self.root, "leftImg8bit", split)
- self.targets_dir = os.path.join(self.root, self.mode, split)
- self.target_type = target_type
- self.split = split
- self.images = []
- self.targets = []
- verify_str_arg(mode, "mode", ("fine", "coarse"))
- if mode == "fine":
- valid_modes = ("train", "test", "val")
- else:
- valid_modes = ("train", "train_extra", "val")
- msg = "Unknown value '{}' for argument split if mode is '{}'. Valid values are {{{}}}."
- msg = msg.format(split, mode, iterable_to_str(valid_modes))
- verify_str_arg(split, "split", valid_modes, msg)
- if not isinstance(target_type, list):
- self.target_type = [target_type]
- [
- verify_str_arg(value, "target_type", ("instance", "semantic", "polygon", "color"))
- for value in self.target_type
- ]
- if not os.path.isdir(self.images_dir) or not os.path.isdir(self.targets_dir):
- if split == "train_extra":
- image_dir_zip = os.path.join(self.root, "leftImg8bit_trainextra.zip")
- else:
- image_dir_zip = os.path.join(self.root, "leftImg8bit_trainvaltest.zip")
- if self.mode == "gtFine":
- target_dir_zip = os.path.join(self.root, f"{self.mode}_trainvaltest.zip")
- elif self.mode == "gtCoarse":
- target_dir_zip = os.path.join(self.root, f"{self.mode}.zip")
- if os.path.isfile(image_dir_zip) and os.path.isfile(target_dir_zip):
- extract_archive(from_path=image_dir_zip, to_path=self.root)
- extract_archive(from_path=target_dir_zip, to_path=self.root)
- else:
- raise RuntimeError(
- "Dataset not found or incomplete. Please make sure all required folders for the"
- ' specified "split" and "mode" are inside the "root" directory'
- )
- for city in os.listdir(self.images_dir):
- img_dir = os.path.join(self.images_dir, city)
- target_dir = os.path.join(self.targets_dir, city)
- for file_name in os.listdir(img_dir):
- target_types = []
- for t in self.target_type:
- target_name = "{}_{}".format(
- file_name.split("_leftImg8bit")[0], self._get_target_suffix(self.mode, t)
- )
- target_types.append(os.path.join(target_dir, target_name))
- self.images.append(os.path.join(img_dir, file_name))
- self.targets.append(target_types)
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: (image, target) where target is a tuple of all target types if target_type is a list with more
- than one item. Otherwise, target is a json object if target_type="polygon", else the image segmentation.
- """
- image = Image.open(self.images[index]).convert("RGB")
- targets: Any = []
- for i, t in enumerate(self.target_type):
- if t == "polygon":
- target = self._load_json(self.targets[index][i])
- else:
- target = Image.open(self.targets[index][i]) # type: ignore[assignment]
- targets.append(target)
- target = tuple(targets) if len(targets) > 1 else targets[0] # type: ignore[assignment]
- if self.transforms is not None:
- image, target = self.transforms(image, target)
- return image, target
- def __len__(self) -> int:
- return len(self.images)
- def extra_repr(self) -> str:
- lines = ["Split: {split}", "Mode: {mode}", "Type: {target_type}"]
- return "\n".join(lines).format(**self.__dict__)
- def _load_json(self, path: str) -> Dict[str, Any]:
- with open(path) as file:
- data = json.load(file)
- return data
- def _get_target_suffix(self, mode: str, target_type: str) -> str:
- if target_type == "instance":
- return f"{mode}_instanceIds.png"
- elif target_type == "semantic":
- return f"{mode}_labelIds.png"
- elif target_type == "color":
- return f"{mode}_color.png"
- else:
- return f"{mode}_polygons.json"
|