1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
- import os.path
- import pickle
- from pathlib import Path
- from typing import Any, Callable, Optional, Tuple, Union
- import numpy as np
- from PIL import Image
- from .utils import check_integrity, download_and_extract_archive
- from .vision import VisionDataset
- class CIFAR10(VisionDataset):
- """`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
- Args:
- root (str or ``pathlib.Path``): Root directory of dataset where directory
- ``cifar-10-batches-py`` exists or will be saved to if download is set to True.
- train (bool, optional): If True, creates dataset from training set, otherwise
- creates from test set.
- transform (callable, optional): A function/transform that takes in a PIL image
- and returns a transformed version. E.g, ``transforms.RandomCrop``
- target_transform (callable, optional): A function/transform that takes in the
- target and transforms it.
- download (bool, optional): If true, downloads the dataset from the internet and
- puts it in root directory. If dataset is already downloaded, it is not
- downloaded again.
- """
- base_folder = "cifar-10-batches-py"
- url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
- filename = "cifar-10-python.tar.gz"
- tgz_md5 = "c58f30108f718f92721af3b95e74349a"
- train_list = [
- ["data_batch_1", "c99cafc152244af753f735de768cd75f"],
- ["data_batch_2", "d4bba439e000b95fd0a9bffe97cbabec"],
- ["data_batch_3", "54ebc095f3ab1f0389bbae665268c751"],
- ["data_batch_4", "634d18415352ddfa80567beed471001a"],
- ["data_batch_5", "482c414d41f54cd18b22e5b47cb7c3cb"],
- ]
- test_list = [
- ["test_batch", "40351d587109b95175f43aff81a1287e"],
- ]
- meta = {
- "filename": "batches.meta",
- "key": "label_names",
- "md5": "5ff9c542aee3614f3951f8cda6e48888",
- }
- def __init__(
- self,
- root: Union[str, Path],
- train: bool = True,
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- download: bool = False,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self.train = train # training set or test set
- if download:
- self.download()
- if not self._check_integrity():
- raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
- if self.train:
- downloaded_list = self.train_list
- else:
- downloaded_list = self.test_list
- self.data: Any = []
- self.targets = []
- # now load the picked numpy arrays
- for file_name, checksum in downloaded_list:
- file_path = os.path.join(self.root, self.base_folder, file_name)
- with open(file_path, "rb") as f:
- entry = pickle.load(f, encoding="latin1")
- self.data.append(entry["data"])
- if "labels" in entry:
- self.targets.extend(entry["labels"])
- else:
- self.targets.extend(entry["fine_labels"])
- self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
- self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
- self._load_meta()
- def _load_meta(self) -> None:
- path = os.path.join(self.root, self.base_folder, self.meta["filename"])
- if not check_integrity(path, self.meta["md5"]):
- raise RuntimeError("Dataset metadata file not found or corrupted. You can use download=True to download it")
- with open(path, "rb") as infile:
- data = pickle.load(infile, encoding="latin1")
- self.classes = data[self.meta["key"]]
- self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
- def __getitem__(self, index: int) -> Tuple[Any, Any]:
- """
- Args:
- index (int): Index
- Returns:
- tuple: (image, target) where target is index of the target class.
- """
- img, target = self.data[index], self.targets[index]
- # doing this so that it is consistent with all other datasets
- # to return a PIL Image
- img = Image.fromarray(img)
- if self.transform is not None:
- img = self.transform(img)
- if self.target_transform is not None:
- target = self.target_transform(target)
- return img, target
- def __len__(self) -> int:
- return len(self.data)
- def _check_integrity(self) -> bool:
- for filename, md5 in self.train_list + self.test_list:
- fpath = os.path.join(self.root, self.base_folder, filename)
- if not check_integrity(fpath, md5):
- return False
- return True
- def download(self) -> None:
- if self._check_integrity():
- return
- download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
- def extra_repr(self) -> str:
- split = "Train" if self.train is True else "Test"
- return f"Split: {split}"
- class CIFAR100(CIFAR10):
- """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
- This is a subclass of the `CIFAR10` Dataset.
- """
- base_folder = "cifar-100-python"
- url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
- filename = "cifar-100-python.tar.gz"
- tgz_md5 = "eb9058c3a382ffc7106e4002c42a8d85"
- train_list = [
- ["train", "16019d7e3df5f24257cddd939b257f8d"],
- ]
- test_list = [
- ["test", "f0ef6b0ae62326f3e7ffdfab6717acfc"],
- ]
- meta = {
- "filename": "meta",
- "key": "fine_label_names",
- "md5": "7973b15100ade9c7d40fb424638fde48",
- }
|