1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import contextlib
- from pathlib import Path
- import pytest
- from ultralytics import YOLO, download
- from ultralytics.utils import ASSETS, DATASETS_DIR, ROOT, SETTINGS, WEIGHTS_DIR
- from ultralytics.utils.checks import check_requirements
- MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path
- CFG = 'yolov8n.yaml'
- SOURCE = ASSETS / 'bus.jpg'
- TMP = (ROOT / '../tests/tmp').resolve() # temp directory for test files
- @pytest.mark.skipif(not check_requirements('ray', install=False), reason='ray[tune] not installed')
- def test_model_ray_tune():
- """Tune YOLO model with Ray optimization library."""
- YOLO('yolov8n-cls.yaml').tune(use_ray=True,
- data='imagenet10',
- grace_period=1,
- iterations=1,
- imgsz=32,
- epochs=1,
- plots=False,
- device='cpu')
- @pytest.mark.skipif(not check_requirements('mlflow', install=False), reason='mlflow not installed')
- def test_mlflow():
- """Test training with MLflow tracking enabled."""
- SETTINGS['mlflow'] = True
- YOLO('yolov8n-cls.yaml').train(data='imagenet10', imgsz=32, epochs=3, plots=False, device='cpu')
- @pytest.mark.skipif(not check_requirements('tritonclient', install=False), reason='tritonclient[all] not installed')
- def test_triton():
- """Test NVIDIA Triton Server functionalities."""
- check_requirements('tritonclient[all]')
- import subprocess
- import time
- from tritonclient.http import InferenceServerClient # noqa
- # Create variables
- model_name = 'yolo'
- triton_repo_path = TMP / 'triton_repo'
- triton_model_path = triton_repo_path / model_name
- # Export model to ONNX
- f = YOLO(MODEL).export(format='onnx', dynamic=True)
- # Prepare Triton repo
- (triton_model_path / '1').mkdir(parents=True, exist_ok=True)
- Path(f).rename(triton_model_path / '1' / 'model.onnx')
- (triton_model_path / 'config.pbtxt').touch()
- # Define image https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
- tag = 'nvcr.io/nvidia/tritonserver:23.09-py3' # 6.4 GB
- # Pull the image
- subprocess.call(f'docker pull {tag}', shell=True)
- # Run the Triton server and capture the container ID
- container_id = subprocess.check_output(
- f'docker run -d --rm -v {triton_repo_path}:/models -p 8000:8000 {tag} tritonserver --model-repository=/models',
- shell=True).decode('utf-8').strip()
- # Wait for the Triton server to start
- triton_client = InferenceServerClient(url='localhost:8000', verbose=False, ssl=False)
- # Wait until model is ready
- for _ in range(10):
- with contextlib.suppress(Exception):
- assert triton_client.is_model_ready(model_name)
- break
- time.sleep(1)
- # Check Triton inference
- YOLO(f'http://localhost:8000/{model_name}', 'detect')(SOURCE) # exported model inference
- # Kill and remove the container at the end of the test
- subprocess.call(f'docker kill {container_id}', shell=True)
- @pytest.mark.skipif(not check_requirements('pycocotools', install=False), reason='pycocotools not installed')
- def test_pycocotools():
- """Validate model predictions using pycocotools."""
- from ultralytics.models.yolo.detect import DetectionValidator
- from ultralytics.models.yolo.pose import PoseValidator
- from ultralytics.models.yolo.segment import SegmentationValidator
- # Download annotations after each dataset downloads first
- url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
- args = {'model': 'yolov8n.pt', 'data': 'coco8.yaml', 'save_json': True, 'imgsz': 64}
- validator = DetectionValidator(args=args)
- validator()
- validator.is_coco = True
- download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8/annotations')
- _ = validator.eval_json(validator.stats)
- args = {'model': 'yolov8n-seg.pt', 'data': 'coco8-seg.yaml', 'save_json': True, 'imgsz': 64}
- validator = SegmentationValidator(args=args)
- validator()
- validator.is_coco = True
- download(f'{url}instances_val2017.json', dir=DATASETS_DIR / 'coco8-seg/annotations')
- _ = validator.eval_json(validator.stats)
- args = {'model': 'yolov8n-pose.pt', 'data': 'coco8-pose.yaml', 'save_json': True, 'imgsz': 64}
- validator = PoseValidator(args=args)
- validator()
- validator.is_coco = True
- download(f'{url}person_keypoints_val2017.json', dir=DATASETS_DIR / 'coco8-pose/annotations')
- _ = validator.eval_json(validator.stats)
|