1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from ultralytics import YOLO
- from ultralytics.cfg import get_cfg
- from ultralytics.engine.exporter import Exporter
- from ultralytics.models.yolo import classify, detect, segment
- from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR
- CFG_DET = 'yolov8n.yaml'
- CFG_SEG = 'yolov8n-seg.yaml'
- CFG_CLS = 'yolov8n-cls.yaml' # or 'squeezenet1_0'
- CFG = get_cfg(DEFAULT_CFG)
- MODEL = WEIGHTS_DIR / 'yolov8n'
- def test_func(*args): # noqa
- """Test function callback."""
- print('callback test passed')
- def test_export():
- """Test model exporting functionality."""
- exporter = Exporter()
- exporter.add_callback('on_export_start', test_func)
- assert test_func in exporter.callbacks['on_export_start'], 'callback test failed'
- f = exporter(model=YOLO(CFG_DET).model)
- YOLO(f)(ASSETS) # exported model inference
- def test_detect():
- """Test object detection functionality."""
- overrides = {'data': 'coco8.yaml', 'model': CFG_DET, 'imgsz': 32, 'epochs': 1, 'save': False}
- CFG.data = 'coco8.yaml'
- CFG.imgsz = 32
- # Trainer
- trainer = detect.DetectionTrainer(overrides=overrides)
- trainer.add_callback('on_train_start', test_func)
- assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
- trainer.train()
- # Validator
- val = detect.DetectionValidator(args=CFG)
- val.add_callback('on_val_start', test_func)
- assert test_func in val.callbacks['on_val_start'], 'callback test failed'
- val(model=trainer.best) # validate best.pt
- # Predictor
- pred = detect.DetectionPredictor(overrides={'imgsz': [64, 64]})
- pred.add_callback('on_predict_start', test_func)
- assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
- result = pred(source=ASSETS, model=f'{MODEL}.pt')
- assert len(result), 'predictor test failed'
- overrides['resume'] = trainer.last
- trainer = detect.DetectionTrainer(overrides=overrides)
- try:
- trainer.train()
- except Exception as e:
- print(f'Expected exception caught: {e}')
- return
- Exception('Resume test failed!')
- def test_segment():
- """Test image segmentation functionality."""
- overrides = {'data': 'coco8-seg.yaml', 'model': CFG_SEG, 'imgsz': 32, 'epochs': 1, 'save': False}
- CFG.data = 'coco8-seg.yaml'
- CFG.imgsz = 32
- # YOLO(CFG_SEG).train(**overrides) # works
- # Trainer
- trainer = segment.SegmentationTrainer(overrides=overrides)
- trainer.add_callback('on_train_start', test_func)
- assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
- trainer.train()
- # Validator
- val = segment.SegmentationValidator(args=CFG)
- val.add_callback('on_val_start', test_func)
- assert test_func in val.callbacks['on_val_start'], 'callback test failed'
- val(model=trainer.best) # validate best.pt
- # Predictor
- pred = segment.SegmentationPredictor(overrides={'imgsz': [64, 64]})
- pred.add_callback('on_predict_start', test_func)
- assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
- result = pred(source=ASSETS, model=f'{MODEL}-seg.pt')
- assert len(result), 'predictor test failed'
- # Test resume
- overrides['resume'] = trainer.last
- trainer = segment.SegmentationTrainer(overrides=overrides)
- try:
- trainer.train()
- except Exception as e:
- print(f'Expected exception caught: {e}')
- return
- Exception('Resume test failed!')
- def test_classify():
- """Test image classification functionality."""
- overrides = {'data': 'imagenet10', 'model': CFG_CLS, 'imgsz': 32, 'epochs': 1, 'save': False}
- CFG.data = 'imagenet10'
- CFG.imgsz = 32
- # YOLO(CFG_SEG).train(**overrides) # works
- # Trainer
- trainer = classify.ClassificationTrainer(overrides=overrides)
- trainer.add_callback('on_train_start', test_func)
- assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
- trainer.train()
- # Validator
- val = classify.ClassificationValidator(args=CFG)
- val.add_callback('on_val_start', test_func)
- assert test_func in val.callbacks['on_val_start'], 'callback test failed'
- val(model=trainer.best)
- # Predictor
- pred = classify.ClassificationPredictor(overrides={'imgsz': [64, 64]})
- pred.add_callback('on_predict_start', test_func)
- assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
- result = pred(source=ASSETS, model=trainer.best)
- assert len(result), 'predictor test failed'
|