Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Ultralytics 곡μ YOLOv8 λ¬Έμμ λλ€. λͺ¨λΈ νλ ¨, κ²μ¦, μμΈ‘ λ° λ€μν νμμΌλ‘ λͺ¨λΈ λ΄λ³΄λ΄κΈ° λ°©λ²μ λ°°μ°μμμ€. μΈλΆμ μΈ μ±λ₯ ν΅κ³λ₯Ό ν¬ν¨ν©λλ€. | YOLOv8, Ultralytics, κ°μ²΄ κ°μ§, μ¬μ νλ ¨λ λͺ¨λΈ, νλ ¨, κ²μ¦, μμΈ‘, λͺ¨λΈ λ΄λ³΄λ΄κΈ°, COCO, ImageNet, PyTorch, ONNX, CoreML |
κ°μ²΄ κ°μ§λ μ΄λ―Έμ§ λλ λΉλμ€ μ€νΈλ¦Ό λ΄μ κ°μ²΄μ μμΉμ ν΄λμ€λ₯Ό μλ³νλ μμ μ λλ€.
κ°μ²΄ κ°μ§κΈ°μ μΆλ ₯μ μ΄λ―Έμ§ μ κ°μ²΄λ₯Ό λ΄ν¬νλ κ²½κ³ μμ(bounding box) μΈνΈμ κ° μμμ λν ν΄λμ€ λ μ΄λΈκ³Ό μ λ’°λ μ μλ₯Ό ν¬ν¨ν©λλ€. μ₯λ©΄ λ΄ κ΄μ¬ κ°μ²΄λ₯Ό μλ³ν΄μΌ νμ§λ§ κ°μ²΄μ μ νν μμΉλ μ νν λͺ¨μμ μ νμκ° μμ λ κ°μ²΄ κ°μ§κ° μ’μ μ νμ λλ€.
μμ²νκΈ°: μ¬μ νλ ¨λ Ultralytics YOLOv8 λͺ¨λΈλ‘ κ°μ²΄ κ°μ§νκΈ°.
!!! Tip "ν"
YOLOv8 Detect λͺ¨λΈλ€μ κΈ°λ³Έ YOLOv8 λͺ¨λΈμ΄λ©° μλ₯Ό λ€μ΄ `yolov8n.pt` μ΄ [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) λ°μ΄ν°μ
μμ μ¬μ νλ ¨λμμ΅λλ€.
μ¬κΈ°μλ YOLOv8 μ¬μ νλ ¨λ Detect λͺ¨λΈμ λνλ λλ€. Detect, Segment, λ° Pose λͺ¨λΈμ COCO λ°μ΄ν°μ μμ, Classify λͺ¨λΈμ ImageNet λ°μ΄ν°μ μμ μ¬μ νλ ¨λμμ΅λλ€.
λͺ¨λΈμ 첫 μ¬μ© μ Ultralyticsμ μ΅μ 릴리μ¦μμ μλμΌλ‘ λ€μ΄λ‘λλ©λλ€.
λͺ¨λΈ | ν¬κΈ° (ν½μ ) |
mAPval 50-95 |
μλ CPU ONNX (ms) |
μλ A100 TensorRT (ms) |
νλΌλ―Έν° (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv8n | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
YOLOv8s | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
YOLOv8m | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
YOLOv8l | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
YOLOv8x | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
yolo val detect data=coco.yaml device=0
λͺ
λ ΉμΌλ‘ μ¬νν μ μμ΅λλ€.yolo val detect data=coco128.yaml batch=1 device=0|cpu
λͺ
λ ΉμΌλ‘ μ¬νν μ μμ΅λλ€.COCO128 λ°μ΄ν°μ μμ μ΄λ―Έμ§ ν¬κΈ° 640μΌλ‘ YOLOv8n λͺ¨λΈμ 100 μν¬ν¬ λμ νλ ¨ν©λλ€. κ°λ₯ν λͺ¨λ μΈμμ λν λͺ©λ‘μ μ€μ νμ΄μ§μμ νμΈν μ μμ΅λλ€.
!!! Example "μμ "
=== "Python"
```python
from ultralytics import YOLO
# λͺ¨λΈ λ‘λνκΈ°
model = YOLO('yolov8n.yaml') # YAMLμμ μ λͺ¨λΈμ λΉλν©λλ€.
model = YOLO('yolov8n.pt') # μ¬μ νλ ¨λ λͺ¨λΈμ λ‘λν©λλ€(νλ ¨μ μν΄ κΆμ₯λ©λλ€).
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # YAMLμμ λΉλνκ³ κ°μ€μΉλ₯Ό μ λ¬ν©λλ€.
# λͺ¨λΈ νλ ¨νκΈ°
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
```
=== "CLI"
```bash
# YAMLμμ μ λͺ¨λΈμ λΉλνκ³ μ²μλΆν° νλ ¨μ μμν©λλ€.
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640
# μ¬μ νλ ¨λ *.pt λͺ¨λΈλ‘λΆν° νλ ¨μ μμν©λλ€.
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
# YAMLμμ μ λͺ¨λΈμ λΉλνκ³ , μ¬μ νλ ¨λ κ°μ€μΉλ₯Ό μ λ¬ν ν νλ ¨μ μμν©λλ€.
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
```
YOLO κ°μ§ λ°μ΄ν°μ νμμ λ°μ΄ν°μ κ°μ΄λμμ μμΈν λ³Ό μ μμ΅λλ€. λ€λ₯Έ νμ(μ: COCO λ±)μ κΈ°μ‘΄ λ°μ΄ν°μ μ YOLO νμμΌλ‘ λ³ννλ €λ©΄ Ultralyticsμ JSON2YOLO λꡬλ₯Ό μ¬μ©νμμμ€.
COCO128 λ°μ΄ν°μ
μμ νλ ¨λ YOLOv8n λͺ¨λΈμ μ νλλ₯Ό κ²μ¦ν©λλ€. model
μ νλ ¨ μμ data
μ μΈμλ₯Ό λͺ¨λΈ μμ±μΌλ‘ 보쑴νκΈ° λλ¬Έμ μΈμλ₯Ό μ λ¬ν νμκ° μμ΅λλ€.
!!! Example "μμ "
=== "Python"
```python
from ultralytics import YOLO
# λͺ¨λΈ λ‘λνκΈ°
model = YOLO('yolov8n.pt') # 곡μ λͺ¨λΈμ λ‘λν©λλ€.
model = YOLO('path/to/best.pt') # μ¬μ©μ μ μ λͺ¨λΈμ λ‘λν©λλ€.
# λͺ¨λΈ κ²μ¦νκΈ°
metrics = model.val() # λ°μ΄ν°μ
κ³Ό μ€μ μ κΈ°μ΅νλ μΈμλ νμ μμ΅λλ€.
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # κ° μΉ΄ν
κ³ λ¦¬μ map50-95κ° ν¬ν¨λ 리μ€νΈμ
λλ€.
```
=== "CLI"
```bash
yolo detect val model=yolov8n.pt # 곡μ λͺ¨λΈ κ²μ¦νκΈ°
yolo detect val model=path/to/best.pt # μ¬μ©μ μ μ λͺ¨λΈ κ²μ¦νκΈ°
```
νλ ¨λ YOLOv8n λͺ¨λΈμ μ¬μ©νμ¬ μ΄λ―Έμ§μ λν μμΈ‘μ μνν©λλ€.
!!! Example "μμ "
=== "Python"
```python
from ultralytics import YOLO
# λͺ¨λΈ λ‘λνκΈ°
model = YOLO('yolov8n.pt') # 곡μ λͺ¨λΈμ λ‘λν©λλ€.
model = YOLO('path/to/best.pt') # μ¬μ©μ μ μ λͺ¨λΈμ λ‘λν©λλ€.
# λͺ¨λΈλ‘ μμΈ‘νκΈ°
results = model('https://ultralytics.com/images/bus.jpg') # μ΄λ―Έμ§μ λν΄ μμΈ‘ν©λλ€.
```
=== "CLI"
```bash
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # 곡μ λͺ¨λΈλ‘ μμΈ‘νκΈ°
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # μ¬μ©μ μ μ λͺ¨λΈλ‘ μμΈ‘νκΈ°
```
μ 체 'predict' λͺ¨λ μΈλΆ μ¬νμ Predict νμ΄μ§μμ νμΈνμΈμ.
YOLOv8n λͺ¨λΈμ ONNX, CoreML λ±κ³Ό κ°μ λ€λ₯Έ νμμΌλ‘ λ΄λ³΄λ λλ€.
!!! Example "μμ "
=== "Python"
```python
from ultralytics import YOLO
# λͺ¨λΈ λ‘λνκΈ°
model = YOLO('yolov8n.pt') # 곡μ λͺ¨λΈμ λ‘λν©λλ€.
model = YOLO('path/to/best.pt') # μ¬μ©μ μ μ λͺ¨λΈμ λ‘λν©λλ€.
# λͺ¨λΈ λ΄λ³΄λ΄κΈ°
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n.pt format=onnx # 곡μ λͺ¨λΈ λ΄λ³΄λ΄κΈ°
yolo export model=path/to/best.pt format=onnx # μ¬μ©μ μ μ λͺ¨λΈ λ΄λ³΄λ΄κΈ°
```
μ¬μ© κ°λ₯ν YOLOv8 λ΄λ³΄λ΄κΈ° νμμ μλ νμ λμ μμ΅λλ€. λ΄λ³΄λ΄κΈ° μλ£ ν μ¬μ© μμλ λͺ¨λΈμ λν΄ λ³΄μ¬μ€λλ€.
νμ | format μΈμ |
λͺ¨λΈ | λ©νλ°μ΄ν° | μΈμ |
---|---|---|---|---|
PyTorch | - | yolov8n.pt |
β | - |
TorchScript | torchscript |
yolov8n.torchscript |
β | imgsz , optimize |
ONNX | onnx |
yolov8n.onnx |
β | imgsz , half , dynamic , simplify , opset |
OpenVINO | openvino |
yolov8n_openvino_model/ |
β | imgsz , half |
TensorRT | engine |
yolov8n.engine |
β | imgsz , half , dynamic , simplify , workspace |
CoreML | coreml |
yolov8n.mlpackage |
β | imgsz , half , int8 , nms |
TF SavedModel | saved_model |
yolov8n_saved_model/ |
β | imgsz , keras |
TF GraphDef | pb |
yolov8n.pb |
β | imgsz |
TF Lite | tflite |
yolov8n.tflite |
β | imgsz , half , int8 |
TF Edge TPU | edgetpu |
yolov8n_edgetpu.tflite |
β | imgsz |
TF.js | tfjs |
yolov8n_web_model/ |
β | imgsz |
PaddlePaddle | paddle |
yolov8n_paddle_model/ |
β | imgsz |
ncnn | ncnn |
yolov8n_ncnn_model/ |
β | imgsz , half |
μ 체 'export' μΈλΆ μ¬νμ Export νμ΄μ§μμ νμΈνμΈμ.
Press p or to see the previous file or, n or to see the next file
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?