Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | YOLOv8 λΆλ₯ λͺ¨λΈμ λν μ΄λ―Έμ§ λΆλ₯ μ 보λ₯Ό μμ보μΈμ. μ¬μ νλ ¨λ λͺ¨λΈ λͺ©λ‘κ³Ό λͺ¨λΈ νμ΅, κ²μ¦, μμΈ‘, λ΄λ³΄λ΄κΈ° λ°©λ²μ λν μμΈν μ 보λ₯Ό νμΈνμ€ μ μμ΅λλ€. | Ultralytics, YOLOv8, μ΄λ―Έμ§ λΆλ₯, μ¬μ νλ ¨λ λͺ¨λΈ, YOLOv8n-cls, νμ΅, κ²μ¦, μμΈ‘, λͺ¨λΈ λ΄λ³΄λ΄κΈ° |
μ΄λ―Έμ§ λΆλ₯λ κ°μ₯ λ¨μν μΈ κ°μ§ μμ μ€ νλλ‘, μ 체 μ΄λ―Έμ§λ₯Ό 미리 μ μλ ν΄λμ€ μ§ν© μ€ νλλ‘ λΆλ₯νλ μμ μ λλ€.
μ΄λ―Έμ§ λΆλ₯κΈ°μ μΆλ ₯μ λ¨μΌ ν΄λμ€ λΌλ²¨κ³Ό μ λ’°λ μ μμ λλ€. μ΄λ―Έμ§ λΆλ₯λ ν΄λμ€μ μ΄λ―Έμ§λ§ μκ³ μΆκ³ ν΄λΉ ν΄λμ€μ κ°μ²΄κ° μ΄λμ μμΉνκ³ μλμ§ λλ κ·Έ μ νν ννκ° λ¬΄μμΈμ§ μ νμκ° μμ λ μ μ©ν©λλ€.
!!! Tip "ν"
YOLOv8 λΆλ₯ λͺ¨λΈμ `-cls` μ λ―Έμ¬λ₯Ό μ¬μ©ν©λλ€. μ: `yolov8n-cls.pt`μ΄λ©°, [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml)μμ μ¬μ νλ ¨λμμ΅λλ€.
μ¬κΈ°μλ μ¬μ νλ ¨λ YOLOv8 λΆλ₯ λͺ¨λΈμ΄ νμλ©λλ€. Detect, Segment λ° Pose λͺ¨λΈμ COCO λ°μ΄ν°μ μμ μ¬μ νλ ¨λκ³ , λΆλ₯ λͺ¨λΈμ ImageNet λ°μ΄ν°μ μμ μ¬μ νλ ¨λ©λλ€.
λͺ¨λΈμ 첫 μ¬μ© μ μ΅μ Ultralytics 릴리μ€μμ μλμΌλ‘ λ€μ΄λ‘λλ©λλ€.
λͺ¨λΈ | ν¬κΈ° (ν½μ ) |
μ νλ top1 |
μ νλ top5 |
μλ CPU ONNX (ms) |
μλ A100 TensorRT (ms) |
λ§€κ°λ³μ (M) |
FLOPs (B) at 640 |
---|---|---|---|---|---|---|---|
YOLOv8n-cls | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
YOLOv8s-cls | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
YOLOv8m-cls | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
YOLOv8l-cls | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
YOLOv8x-cls | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
yolo val classify data=path/to/ImageNet device=0
yolo val classify data=path/to/ImageNet batch=1 device=0|cpu
YOLOv8n-cls λͺ¨λΈμ MNIST160 λ°μ΄ν°μ μμ 100 μν¬ν¬ λμ νμ΅μν€κ³ μ΄λ―Έμ§ ν¬κΈ°λ 64λ‘ μ€μ ν©λλ€. κ°λ₯ν λͺ¨λ μΈμλ μ€μ νμ΄μ§μμ νμΈν μ μμ΅λλ€.
!!! Example "μμ "
=== "Python"
```python
from ultralytics import YOLO
# λͺ¨λΈ λΆλ¬μ€κΈ°
model = YOLO('yolov8n-cls.yaml') # YAMLμμ μ λͺ¨λΈ ꡬμΆ
model = YOLO('yolov8n-cls.pt') # μ¬μ νλ ¨λ λͺ¨λΈ λΆλ¬μ€κΈ° (νμ΅μ© μΆμ²)
model = YOLO('yolov8n-cls.yaml').load('yolov8n-cls.pt') # YAMLλ‘ κ΅¬μΆνκ³ κ°μ€μΉ μ μ‘
# λͺ¨λΈ νμ΅
result = model.train(data='mnist160', epochs=100, imgsz=64)
```
=== "CLI"
```bash
# YAMLμμ μ λͺ¨λΈμ ꡬμΆνκ³ μ²μλΆν° νμ΅ μμ
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64
# μ¬μ νλ ¨λ *.pt λͺ¨λΈμμ νμ΅ μμ
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
# YAMLμμ μ λͺ¨λΈμ ꡬμΆνκ³ μ¬μ νλ ¨λ κ°μ€μΉλ₯Ό μ μ‘ν λ€ νμ΅ μμ
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
```
YOLO λΆλ₯ λ°μ΄ν°μ νμμ λ°μ΄ν°μ κ°μ΄λμμ μμΈν νμΈν μ μμ΅λλ€.
νμ΅λ YOLOv8n-cls λͺ¨λΈμ μ νλλ₯Ό MNIST160 λ°μ΄ν°μ
μμ κ²μ¦ν©λλ€. model
μ λͺ¨λΈ μμ±μΌλ‘ νλ ¨ μ data
λ° μΈμλ₯Ό μ μ§νλ―λ‘ μΆκ° μΈμλ₯Ό μ λ¬ν νμκ° μμ΅λλ€.
!!! Example "μμ "
=== "Python"
```python
from ultralytics import YOLO
# λͺ¨λΈ λΆλ¬μ€κΈ°
model = YOLO('yolov8n-cls.pt') # 곡μ λͺ¨λΈ λΆλ¬μ€κΈ°
model = YOLO('path/to/best.pt') # μ¬μ©μ λͺ¨λΈ λΆλ¬μ€κΈ°
# λͺ¨λΈ κ²μ¦
metrics = model.val() # μΆκ° μΈμ λΆνμ, λ°μ΄ν°μ
λ° μ€μ κΈ°μ΅ν¨
metrics.top1 # top1 μ νλ
metrics.top5 # top5 μ νλ
```
=== "CLI"
```bash
yolo classify val model=yolov8n-cls.pt # 곡μ λͺ¨λΈ κ²μ¦
yolo classify val model=path/to/best.pt # μ¬μ©μ λͺ¨λΈ κ²μ¦
```
νμ΅λ YOLOv8n-cls λͺ¨λΈμ μ¬μ©νμ¬ μ΄λ―Έμ§μ λν μμΈ‘μ μ€νν©λλ€.
!!! Example "μμ "
=== "Python"
```python
from ultralytics import YOLO
# λͺ¨λΈ λΆλ¬μ€κΈ°
model = YOLO('yolov8n-cls.pt') # 곡μ λͺ¨λΈ λΆλ¬μ€κΈ°
model = YOLO('path/to/best.pt') # μ¬μ©μ λͺ¨λΈ λΆλ¬μ€κΈ°
# μμΈ‘ μ€ν
results = model('https://ultralytics.com/images/bus.jpg') # μ΄λ―Έμ§μ λν μμΈ‘ μ€ν
```
=== "CLI"
```bash
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # 곡μ λͺ¨λΈλ‘ μμΈ‘ μ€ν
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # μ¬μ©μ λͺ¨λΈλ‘ μμΈ‘ μ€ν
```
μμΈν predict
λͺ¨λ μ 보λ μμΈ‘ νμ΄μ§μμ νμΈνμΈμ.
YOLOv8n-cls λͺ¨λΈμ ONNX, CoreML λ±κ³Ό κ°μ λ€λ₯Έ νμμΌλ‘ λ΄λ³΄λ λλ€.
!!! Example "μμ "
=== "Python"
```python
from ultralytics import YOLO
# λͺ¨λΈ λΆλ¬μ€κΈ°
model = YOLO('yolov8n-cls.pt') # 곡μ λͺ¨λΈ λΆλ¬μ€κΈ°
model = YOLO('path/to/best.pt') # μ¬μ©μ νλ ¨ λͺ¨λΈ λΆλ¬μ€κΈ°
# λͺ¨λΈ λ΄λ³΄λ΄κΈ°
model.export(format='onnx')
```
=== "CLI"
```bash
yolo export model=yolov8n-cls.pt format=onnx # 곡μ λͺ¨λΈ λ΄λ³΄λ΄κΈ°
yolo export model=path/to/best.pt format=onnx # μ¬μ©μ νλ ¨ λͺ¨λΈ λ΄λ³΄λ΄κΈ°
```
μλ νμ μ¬μ© κ°λ₯ν YOLOv8-cls λ΄λ³΄λ΄κΈ° νμμ΄ λμ μμ΅λλ€. λ΄λ³΄λΈ λͺ¨λΈμμ λ°λ‘ μμΈ‘νκ±°λ κ²μ¦ν μ μμ΅λλ€. μ¦, yolo predict model=yolov8n-cls.onnx
λ₯Ό μ¬μ©ν μ μμ΅λλ€. λ΄λ³΄λ΄κΈ°κ° μλ£λ ν λͺ¨λΈμ λν μ¬μ© μμ λ€μ΄ νμλ©λλ€.
νμ | format μΈμ |
λͺ¨λΈ | λ©νλ°μ΄ν° | μΈμ |
---|---|---|---|---|
PyTorch | - | yolov8n-cls.pt |
β | - |
TorchScript | torchscript |
yolov8n-cls.torchscript |
β | imgsz , optimize |
ONNX | onnx |
yolov8n-cls.onnx |
β | imgsz , half , dynamic , simplify , opset |
OpenVINO | openvino |
yolov8n-cls_openvino_model/ |
β | imgsz , half |
TensorRT | engine |
yolov8n-cls.engine |
β | imgsz , half , dynamic , simplify , workspace |
CoreML | coreml |
yolov8n-cls.mlpackage |
β | imgsz , half , int8 , nms |
TF SavedModel | saved_model |
yolov8n-cls_saved_model/ |
β | imgsz , keras |
TF GraphDef | pb |
yolov8n-cls.pb |
β | imgsz |
TF Lite | tflite |
yolov8n-cls.tflite |
β | imgsz , half , int8 |
TF Edge TPU | edgetpu |
yolov8n-cls_edgetpu.tflite |
β | imgsz |
TF.js | tfjs |
yolov8n-cls_web_model/ |
β | imgsz |
PaddlePaddle | paddle |
yolov8n-cls_paddle_model/ |
β | imgsz |
ncnn | ncnn |
yolov8n-cls_ncnn_model/ |
β | imgsz , half |
μμΈν export
μ 보λ λ΄λ³΄λ΄κΈ° νμ΄μ§μμ νμΈνμΈμ.
Press p or to see the previous file or, n or to see the next file
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?