Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Learn how to estimate object speed using Ultralytics YOLO11 for applications in traffic control, autonomous navigation, and surveillance. | Ultralytics YOLO11, speed estimation, object tracking, computer vision, traffic control, autonomous navigation, surveillance, security |
Speed estimation is the process of calculating the rate of movement of an object within a given context, often employed in computer vision applications. Using Ultralytics YOLO11 you can now calculate the speed of object using object tracking alongside distance and time data, crucial for tasks like traffic and surveillance. The accuracy of speed estimation directly influences the efficiency and reliability of various applications, making it a key component in the advancement of intelligent systems and real-time decision-making processes.
Watch: Speed Estimation using Ultralytics YOLO11
!!! tip "Check Out Our Blog"
For deeper insights into speed estimation, check out our blog post: [Ultralytics YOLO11 for Speed Estimation in Computer Vision Projects](https://www.ultralytics.com/blog/ultralytics-yolov8-for-speed-estimation-in-computer-vision-projects)
Transportation | Transportation |
---|---|
![]() |
![]() |
Speed Estimation on Road using Ultralytics YOLO11 | Speed Estimation on Bridge using Ultralytics YOLO11 |
!!! example "Speed Estimation using YOLO11 Example"
=== "Speed Estimation"
```python
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("speed_management.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
speed_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
speed = solutions.SpeedEstimator(model="yolo11n.pt", region=speed_region, show=True)
while cap.isOpened():
success, im0 = cap.read()
if success:
out = speed.estimate_speed(im0)
video_writer.write(im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
continue
print("Video frame is empty or video processing has been successfully completed.")
break
cap.release()
cv2.destroyAllWindows()
```
???+ warning "Speed is Estimate"
Speed will be an estimate and may not be completely accurate. Additionally, the estimation can vary depending on GPU speed.
SpeedEstimator
Name | Type | Default | Description |
---|---|---|---|
model |
str |
None |
Path to Ultralytics YOLO Model File |
region |
list |
[(20, 400), (1260, 400)] |
List of points defining the counting region. |
line_width |
int |
2 |
Line thickness for bounding boxes. |
show |
bool |
False |
Flag to control whether to display the video stream. |
model.track
{% include "macros/track-args.md" %}
Estimating object speed with Ultralytics YOLO11 involves combining object detection and tracking techniques. First, you need to detect objects in each frame using the YOLO11 model. Then, track these objects across frames to calculate their movement over time. Finally, use the distance traveled by the object between frames and the frame rate to estimate its speed.
Example:
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("speed_estimation.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Initialize SpeedEstimator
speed_obj = solutions.SpeedEstimator(
region=[(0, 360), (1280, 360)],
model="yolo11n.pt",
show=True,
)
while cap.isOpened():
success, im0 = cap.read()
if not success:
break
im0 = speed_obj.estimate_speed(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
For more details, refer to our official blog post.
Using Ultralytics YOLO11 for speed estimation offers significant advantages in traffic management:
For more applications, see advantages of speed estimation.
Yes, YOLO11 can be integrated with other AI frameworks like TensorFlow and PyTorch. Ultralytics provides support for exporting YOLO11 models to various formats like ONNX, TensorRT, and CoreML, ensuring smooth interoperability with other ML frameworks.
To export a YOLO11 model to ONNX format:
yolo export --weights yolo11n.pt --include onnx
Learn more about exporting models in our guide on export.
The accuracy of speed estimation using Ultralytics YOLO11 depends on several factors, including the quality of the object tracking, the resolution and frame rate of the video, and environmental variables. While the speed estimator provides reliable estimates, it may not be 100% accurate due to variances in frame processing speed and object occlusion.
Note: Always consider margin of error and validate the estimates with ground truth data when possible.
For further accuracy improvement tips, check the Arguments SpeedEstimator
section.
Ultralytics YOLO11 offers several advantages over other object detection models, such as the TensorFlow Object Detection API:
For more information on the benefits of YOLO11, explore our detailed model page.
Press p or to see the previous file or, n or to see the next file
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?