Are you sure you want to delete this access key?
comments | description | keywords |
---|---|---|
true | Enhance your security with real-time object detection using Ultralytics YOLO11. Reduce false positives and integrate seamlessly with existing systems. | YOLO11, Security Alarm System, real-time object detection, Ultralytics, computer vision, integration, false positives |
The Security Alarm System Project utilizing Ultralytics YOLO11 integrates advanced computer vision capabilities to enhance security measures. YOLO11, developed by Ultralytics, provides real-time object detection, allowing the system to identify and respond to potential security threats promptly. This project offers several advantages:
Watch: Security Alarm System Project with Ultralytics YOLO11 Object Detection
???+ note
App Password Generation is necessary
password = ""
from_email = "" # must match the email used to generate the password
to_email = "" # receiver email
import smtplib
server = smtplib.SMTP("smtp.gmail.com: 587")
server.starttls()
server.login(from_email, password)
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
def send_email(to_email, from_email, object_detected=1):
"""Sends an email notification indicating the number of objects detected; defaults to 1 object."""
message = MIMEMultipart()
message["From"] = from_email
message["To"] = to_email
message["Subject"] = "Security Alert"
# Add in the message body
message_body = f"ALERT - {object_detected} objects has been detected!!"
message.attach(MIMEText(message_body, "plain"))
server.sendmail(from_email, to_email, message.as_string())
from time import time
import cv2
import torch
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
class ObjectDetection:
def __init__(self, capture_index):
"""Initializes an ObjectDetection instance with a given camera index."""
self.capture_index = capture_index
self.email_sent = False
# model information
self.model = YOLO("yolo11n.pt")
# visual information
self.annotator = None
self.start_time = 0
self.end_time = 0
# device information
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def predict(self, im0):
"""Run prediction using a YOLO model for the input image `im0`."""
results = self.model(im0)
return results
def display_fps(self, im0):
"""Displays the FPS on an image `im0` by calculating and overlaying as white text on a black rectangle."""
self.end_time = time()
fps = 1 / round(self.end_time - self.start_time, 2)
text = f"FPS: {int(fps)}"
text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0]
gap = 10
cv2.rectangle(
im0,
(20 - gap, 70 - text_size[1] - gap),
(20 + text_size[0] + gap, 70 + gap),
(255, 255, 255),
-1,
)
cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2)
def plot_bboxes(self, results, im0):
"""Plots bounding boxes on an image given detection results; returns annotated image and class IDs."""
class_ids = []
self.annotator = Annotator(im0, 3, results[0].names)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
names = results[0].names
for box, cls in zip(boxes, clss):
class_ids.append(cls)
self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True))
return im0, class_ids
def __call__(self):
"""Run object detection on video frames from a camera stream, plotting and showing the results."""
cap = cv2.VideoCapture(self.capture_index)
assert cap.isOpened()
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
frame_count = 0
while True:
self.start_time = time()
ret, im0 = cap.read()
assert ret
results = self.predict(im0)
im0, class_ids = self.plot_bboxes(results, im0)
if len(class_ids) > 0: # Only send email If not sent before
if not self.email_sent:
send_email(to_email, from_email, len(class_ids))
self.email_sent = True
else:
self.email_sent = False
self.display_fps(im0)
cv2.imshow("YOLO11 Detection", im0)
frame_count += 1
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()
server.quit()
detector = ObjectDetection(capture_index=0)
detector()
That's it! When you execute the code, you'll receive a single notification on your email if any object is detected. The notification is sent immediately, not repeatedly. However, feel free to customize the code to suit your project requirements.
Ultralytics YOLO11 enhances security alarm systems by delivering high-accuracy, real-time object detection. Its advanced algorithms significantly reduce false positives, ensuring that the system only responds to genuine threats. This increased reliability can be seamlessly integrated with existing security infrastructure, upgrading the overall surveillance quality.
Yes, Ultralytics YOLO11 can be seamlessly integrated with your existing security infrastructure. The system supports various modes and provides flexibility for customization, allowing you to enhance your existing setup with advanced object detection capabilities. For detailed instructions on integrating YOLO11 in your projects, visit the integration section.
Running Ultralytics YOLO11 on a standard setup typically requires around 5GB of free disk space. This includes space for storing the YOLO11 model and any additional dependencies. For cloud-based solutions, Ultralytics HUB offers efficient project management and dataset handling, which can optimize storage needs. Learn more about the Pro Plan for enhanced features including extended storage.
Ultralytics YOLO11 provides an edge over models like Faster R-CNN or SSD with its real-time detection capabilities and higher accuracy. Its unique architecture allows it to process images much faster without compromising on precision, making it ideal for time-sensitive applications like security alarm systems. For a comprehensive comparison of object detection models, you can explore our guide.
To reduce false positives, ensure your Ultralytics YOLO11 model is adequately trained with a diverse and well-annotated dataset. Fine-tuning hyperparameters and regularly updating the model with new data can significantly improve detection accuracy. Detailed hyperparameter tuning techniques can be found in our hyperparameter tuning guide.
Press p or to see the previous file or, n or to see the next file
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?
Are you sure you want to delete this access key?