1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
- # Ultralytics ๐ AGPL-3.0 License - https://ultralytics.com/license
- import argparse
- import cv2
- import numpy as np
- import onnxruntime as ort
- from ultralytics.utils import ASSETS, yaml_load
- from ultralytics.utils.checks import check_yaml
- from ultralytics.utils.plotting import Colors
- class YOLOv8Seg:
- """YOLOv8 segmentation model."""
- def __init__(self, onnx_model):
- """
- Initialization.
- Args:
- onnx_model (str): Path to the ONNX model.
- """
- # Build Ort session
- self.session = ort.InferenceSession(
- onnx_model,
- providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
- if ort.get_device() == "GPU"
- else ["CPUExecutionProvider"],
- )
- # Numpy dtype: support both FP32 and FP16 onnx model
- self.ndtype = np.half if self.session.get_inputs()[0].type == "tensor(float16)" else np.single
- # Get model width and height(YOLOv8-seg only has one input)
- self.model_height, self.model_width = [x.shape for x in self.session.get_inputs()][0][-2:]
- # Load COCO class names
- self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
- # Create color palette
- self.color_palette = Colors()
- def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32):
- """
- The whole pipeline: pre-process -> inference -> post-process.
- Args:
- im0 (Numpy.ndarray): original input image.
- conf_threshold (float): confidence threshold for filtering predictions.
- iou_threshold (float): iou threshold for NMS.
- nm (int): the number of masks.
- Returns:
- boxes (List): list of bounding boxes.
- segments (List): list of segments.
- masks (np.ndarray): [N, H, W], output masks.
- """
- # Pre-process
- im, ratio, (pad_w, pad_h) = self.preprocess(im0)
- # Ort inference
- preds = self.session.run(None, {self.session.get_inputs()[0].name: im})
- # Post-process
- boxes, segments, masks = self.postprocess(
- preds,
- im0=im0,
- ratio=ratio,
- pad_w=pad_w,
- pad_h=pad_h,
- conf_threshold=conf_threshold,
- iou_threshold=iou_threshold,
- nm=nm,
- )
- return boxes, segments, masks
- def preprocess(self, img):
- """
- Pre-processes the input image.
- Args:
- img (Numpy.ndarray): image about to be processed.
- Returns:
- img_process (Numpy.ndarray): image preprocessed for inference.
- ratio (tuple): width, height ratios in letterbox.
- pad_w (float): width padding in letterbox.
- pad_h (float): height padding in letterbox.
- """
- # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
- shape = img.shape[:2] # original image shape
- new_shape = (self.model_height, self.model_width)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- ratio = r, r
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
- if shape[::-1] != new_unpad: # resize
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
- left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
- # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
- img = np.ascontiguousarray(np.einsum("HWC->CHW", img)[::-1], dtype=self.ndtype) / 255.0
- img_process = img[None] if len(img.shape) == 3 else img
- return img_process, ratio, (pad_w, pad_h)
- def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32):
- """
- Post-process the prediction.
- Args:
- preds (Numpy.ndarray): predictions come from ort.session.run().
- im0 (Numpy.ndarray): [h, w, c] original input image.
- ratio (tuple): width, height ratios in letterbox.
- pad_w (float): width padding in letterbox.
- pad_h (float): height padding in letterbox.
- conf_threshold (float): conf threshold.
- iou_threshold (float): iou threshold.
- nm (int): the number of masks.
- Returns:
- boxes (List): list of bounding boxes.
- segments (List): list of segments.
- masks (np.ndarray): [N, H, W], output masks.
- """
- x, protos = preds[0], preds[1] # Two outputs: predictions and protos
- # Transpose dim 1: (Batch_size, xywh_conf_cls_nm, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls_nm)
- x = np.einsum("bcn->bnc", x)
- # Predictions filtering by conf-threshold
- x = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold]
- # Create a new matrix which merge these(box, score, cls, nm) into one
- # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
- x = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]]
- # NMS filtering
- x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
- # Decode and return
- if len(x) > 0:
- # Bounding boxes format change: cxcywh -> xyxy
- x[..., [0, 1]] -= x[..., [2, 3]] / 2
- x[..., [2, 3]] += x[..., [0, 1]]
- # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
- x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
- x[..., :4] /= min(ratio)
- # Bounding boxes boundary clamp
- x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
- x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])
- # Process masks
- masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape)
- # Masks -> Segments(contours)
- segments = self.masks2segments(masks)
- return x[..., :6], segments, masks # boxes, segments, masks
- else:
- return [], [], []
- @staticmethod
- def masks2segments(masks):
- """
- Takes a list of masks(n,h,w) and returns a list of segments(n,xy), from
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
- Args:
- masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160).
- Returns:
- segments (List): list of segment masks.
- """
- segments = []
- for x in masks.astype("uint8"):
- c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0] # CHAIN_APPROX_SIMPLE
- if c:
- c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
- else:
- c = np.zeros((0, 2)) # no segments found
- segments.append(c.astype("float32"))
- return segments
- @staticmethod
- def crop_mask(masks, boxes):
- """
- Takes a mask and a bounding box, and returns a mask that is cropped to the bounding box, from
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
- Args:
- masks (Numpy.ndarray): [n, h, w] tensor of masks.
- boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form.
- Returns:
- (Numpy.ndarray): The masks are being cropped to the bounding box.
- """
- n, h, w = masks.shape
- x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)
- r = np.arange(w, dtype=x1.dtype)[None, None, :]
- c = np.arange(h, dtype=x1.dtype)[None, :, None]
- return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
- def process_mask(self, protos, masks_in, bboxes, im0_shape):
- """
- Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
- quality but is slower, from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
- Args:
- protos (numpy.ndarray): [mask_dim, mask_h, mask_w].
- masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms.
- bboxes (numpy.ndarray): bboxes re-scaled to original image shape.
- im0_shape (tuple): the size of the input image (h,w,c).
- Returns:
- (numpy.ndarray): The upsampled masks.
- """
- c, mh, mw = protos.shape
- masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0) # HWN
- masks = np.ascontiguousarray(masks)
- masks = self.scale_mask(masks, im0_shape) # re-scale mask from P3 shape to original input image shape
- masks = np.einsum("HWN -> NHW", masks) # HWN -> NHW
- masks = self.crop_mask(masks, bboxes)
- return np.greater(masks, 0.5)
- @staticmethod
- def scale_mask(masks, im0_shape, ratio_pad=None):
- """
- Takes a mask, and resizes it to the original image size, from
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
- Args:
- masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
- im0_shape (tuple): the original image shape.
- ratio_pad (tuple): the ratio of the padding to the original image.
- Returns:
- masks (np.ndarray): The masks that are being returned.
- """
- im1_shape = masks.shape[:2]
- if ratio_pad is None: # calculate from im0_shape
- gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
- pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
- else:
- pad = ratio_pad[1]
- # Calculate tlbr of mask
- top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1)) # y, x
- bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1))
- if len(masks.shape) < 2:
- raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
- masks = masks[top:bottom, left:right]
- masks = cv2.resize(
- masks, (im0_shape[1], im0_shape[0]), interpolation=cv2.INTER_LINEAR
- ) # INTER_CUBIC would be better
- if len(masks.shape) == 2:
- masks = masks[:, :, None]
- return masks
- def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True):
- """
- Draw and visualize results.
- Args:
- im (np.ndarray): original image, shape [h, w, c].
- bboxes (numpy.ndarray): [n, 4], n is number of bboxes.
- segments (List): list of segment masks.
- vis (bool): imshow using OpenCV.
- save (bool): save image annotated.
- Returns:
- None
- """
- # Draw rectangles and polygons
- im_canvas = im.copy()
- for (*box, conf, cls_), segment in zip(bboxes, segments):
- # draw contour and fill mask
- cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2) # white borderline
- cv2.fillPoly(im_canvas, np.int32([segment]), self.color_palette(int(cls_), bgr=True))
- # draw bbox rectangle
- cv2.rectangle(
- im,
- (int(box[0]), int(box[1])),
- (int(box[2]), int(box[3])),
- self.color_palette(int(cls_), bgr=True),
- 1,
- cv2.LINE_AA,
- )
- cv2.putText(
- im,
- f"{self.classes[cls_]}: {conf:.3f}",
- (int(box[0]), int(box[1] - 9)),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.7,
- self.color_palette(int(cls_), bgr=True),
- 2,
- cv2.LINE_AA,
- )
- # Mix image
- im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0)
- # Show image
- if vis:
- cv2.imshow("demo", im)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
- # Save image
- if save:
- cv2.imwrite("demo.jpg", im)
- if __name__ == "__main__":
- # Create an argument parser to handle command-line arguments
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", type=str, required=True, help="Path to ONNX model")
- parser.add_argument("--source", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
- parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
- parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
- args = parser.parse_args()
- # Build model
- model = YOLOv8Seg(args.model)
- # Read image by OpenCV
- img = cv2.imread(args.source)
- # Inference
- boxes, segments, _ = model(img, conf_threshold=args.conf, iou_threshold=args.iou)
- # Draw bboxes and polygons
- if len(boxes) > 0:
- model.draw_and_visualize(img, boxes, segments, vis=False, save=True)
|