1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import argparse
- from typing import List, Tuple, Union
- import cv2
- import numpy as np
- import onnxruntime as ort
- import torch
- import ultralytics.utils.ops as ops
- from ultralytics.engine.results import Results
- from ultralytics.utils import ASSETS, YAML
- from ultralytics.utils.checks import check_yaml
- class YOLOv8Seg:
- """
- YOLOv8 segmentation model for performing instance segmentation using ONNX Runtime.
- This class implements a YOLOv8 instance segmentation model using ONNX Runtime for inference. It handles
- preprocessing of input images, running inference with the ONNX model, and postprocessing the results to
- generate bounding boxes and segmentation masks.
- Attributes:
- session (ort.InferenceSession): ONNX Runtime inference session for model execution.
- imgsz (Tuple[int, int]): Input image size as (height, width) for the model.
- classes (dict): Dictionary mapping class indices to class names from the dataset.
- conf (float): Confidence threshold for filtering detections.
- iou (float): IoU threshold used by non-maximum suppression.
- Methods:
- letterbox: Resize and pad image while maintaining aspect ratio.
- preprocess: Preprocess the input image before feeding it into the model.
- postprocess: Post-process model predictions to extract meaningful results.
- process_mask: Process prototype masks with predicted mask coefficients to generate instance segmentation masks.
- Examples:
- >>> model = YOLOv8Seg("yolov8n-seg.onnx", conf=0.25, iou=0.7)
- >>> img = cv2.imread("image.jpg")
- >>> results = model(img)
- >>> cv2.imshow("Segmentation", results[0].plot())
- """
- def __init__(self, onnx_model: str, conf: float = 0.25, iou: float = 0.7, imgsz: Union[int, Tuple[int, int]] = 640):
- """
- Initialize the instance segmentation model using an ONNX model.
- Args:
- onnx_model (str): Path to the ONNX model file.
- conf (float, optional): Confidence threshold for filtering detections.
- iou (float, optional): IoU threshold for non-maximum suppression.
- imgsz (int | Tuple[int, int], optional): Input image size of the model. Can be an integer for square
- input or a tuple for rectangular input.
- """
- self.session = ort.InferenceSession(
- onnx_model,
- providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
- if torch.cuda.is_available()
- else ["CPUExecutionProvider"],
- )
- self.imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz
- self.classes = YAML.load(check_yaml("coco8.yaml"))["names"]
- self.conf = conf
- self.iou = iou
- def __call__(self, img: np.ndarray) -> List[Results]:
- """
- Run inference on the input image using the ONNX model.
- Args:
- img (np.ndarray): The original input image in BGR format.
- Returns:
- (List[Results]): Processed detection results after post-processing, containing bounding boxes and
- segmentation masks.
- """
- prep_img = self.preprocess(img, self.imgsz)
- outs = self.session.run(None, {self.session.get_inputs()[0].name: prep_img})
- return self.postprocess(img, prep_img, outs)
- def letterbox(self, img: np.ndarray, new_shape: Tuple[int, int] = (640, 640)) -> np.ndarray:
- """
- Resize and pad image while maintaining aspect ratio.
- Args:
- img (np.ndarray): Input image in BGR format.
- new_shape (Tuple[int, int], optional): Target shape as (height, width).
- Returns:
- (np.ndarray): Resized and padded image.
- """
- shape = img.shape[:2] # current shape [height, width]
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- # Compute padding
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
- if shape[::-1] != new_unpad: # resize
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
- return img
- def preprocess(self, img: np.ndarray, new_shape: Tuple[int, int]) -> np.ndarray:
- """
- Preprocess the input image before feeding it into the model.
- Args:
- img (np.ndarray): The input image in BGR format.
- new_shape (Tuple[int, int]): The target shape for resizing as (height, width).
- Returns:
- (np.ndarray): Preprocessed image ready for model inference, with shape (1, 3, height, width) and
- normalized to [0, 1].
- """
- img = self.letterbox(img, new_shape)
- img = img[..., ::-1].transpose([2, 0, 1])[None] # BGR to RGB, BHWC to BCHW
- img = np.ascontiguousarray(img)
- img = img.astype(np.float32) / 255 # Normalize to [0, 1]
- return img
- def postprocess(self, img: np.ndarray, prep_img: np.ndarray, outs: List) -> List[Results]:
- """
- Post-process model predictions to extract meaningful results.
- Args:
- img (np.ndarray): The original input image.
- prep_img (np.ndarray): The preprocessed image used for inference.
- outs (List): Model outputs containing predictions and prototype masks.
- Returns:
- (List[Results]): Processed detection results containing bounding boxes and segmentation masks.
- """
- preds, protos = [torch.from_numpy(p) for p in outs]
- preds = ops.non_max_suppression(preds, self.conf, self.iou, nc=len(self.classes))
- results = []
- for i, pred in enumerate(preds):
- pred[:, :4] = ops.scale_boxes(prep_img.shape[2:], pred[:, :4], img.shape)
- masks = self.process_mask(protos[i], pred[:, 6:], pred[:, :4], img.shape[:2])
- results.append(Results(img, path="", names=self.classes, boxes=pred[:, :6], masks=masks))
- return results
- def process_mask(
- self, protos: torch.Tensor, masks_in: torch.Tensor, bboxes: torch.Tensor, shape: Tuple[int, int]
- ) -> torch.Tensor:
- """
- Process prototype masks with predicted mask coefficients to generate instance segmentation masks.
- Args:
- protos (torch.Tensor): Prototype masks with shape (mask_dim, mask_h, mask_w).
- masks_in (torch.Tensor): Predicted mask coefficients with shape (N, mask_dim), where N is number of
- detections.
- bboxes (torch.Tensor): Bounding boxes with shape (N, 4), where N is number of detections.
- shape (Tuple[int, int]): The size of the input image as (height, width).
- Returns:
- (torch.Tensor): Binary segmentation masks with shape (N, height, width).
- """
- c, mh, mw = protos.shape # CHW
- masks = (masks_in @ protos.float().view(c, -1)).view(-1, mh, mw) # Matrix multiplication
- masks = ops.scale_masks(masks[None], shape)[0] # Scale masks to original image size
- masks = ops.crop_mask(masks, bboxes) # Crop masks to bounding boxes
- return masks.gt_(0.0) # Convert to binary masks
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", type=str, required=True, help="Path to ONNX model")
- parser.add_argument("--source", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
- parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
- parser.add_argument("--iou", type=float, default=0.7, help="NMS IoU threshold")
- args = parser.parse_args()
- model = YOLOv8Seg(args.model, args.conf, args.iou)
- img = cv2.imread(args.source)
- results = model(img)
- cv2.imshow("Segmented Image", results[0].plot())
- cv2.waitKey(0)
- cv2.destroyAllWindows()
|