Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel
Integration:  dvc git mlflow github
2e827b6563
dvc added
1 year ago
6bf380d1d6
project folder structure added
1 year ago
0d62fde3f2
code updated
8 months ago
0d62fde3f2
code updated
8 months ago
src
0d62fde3f2
code updated
8 months ago
6bf380d1d6
project folder structure added
1 year ago
2e827b6563
dvc added
1 year ago
d67f109c07
data ingestion added
1 year ago
36a56bd6c2
Initial commit
1 year ago
e51cfb1c79
readme file updated.
1 year ago
0d62fde3f2
code updated
8 months ago
0d62fde3f2
code updated
8 months ago
0d62fde3f2
code updated
8 months ago
0d62fde3f2
code updated
8 months ago
0d62fde3f2
code updated
8 months ago
0d62fde3f2
code updated
8 months ago
663dbac814
requirements added
1 year ago
6bf380d1d6
project folder structure added
1 year ago
Storage Buckets
Data Pipeline
Legend
DVC Managed File
Git Managed File
Metric
Stage File
External File

README.md

You have to be logged in to leave a comment. Sign In

Kidney-Disease-Classification-MLflow-DVC

Workflows

  1. Update config.yaml
  2. Update secrets.yaml [Optional]
  3. Update params.yaml
  4. Update the entity
  5. Update the configuration manager in src config
  6. Update the components
  7. Update the pipeline
  8. Update the main.py
  9. Update the dvc.yaml
  10. app.py

How to run?

STEPS:

Clone the repository

https://github.com/HARSHALKUMRE/Kidney-Disease-Classification-DL-Project

STEP 01- Create a conda environment after opening the repository

conda create -p venv python=3.8 -y
conda activate venv

STEP 02- install the requirements

pip install -r requirements.txt
# Finally run the following command
python app.py

Now,

open up you local host and port

MLflow

cmd
  • mlflow ui

dagshub

dagshub

MLFLOW_TRACKING_URI=<MLFLOW_TRACKING_URI> MLFLOW_TRACKING_USERNAME=<MLFLOW_TRACKING_USERNAME> MLFLOW_TRACKING_PASSWORD=<MLFLOW_TRACKING_PASSWORD> \

Run this to export as env variables:


export MLFLOW_TRACKING_URI=<MLFLOW_TRACKING_URI>

export MLFLOW_TRACKING_USERNAME=<MLFLOW_TRACKING_USERNAME> 

export MLFLOW_TRACKING_PASSWORD=<MLFLOW_TRACKING_PASSWORD>

DVC cmd

  1. dvc init
  2. dvc repro
  3. dvc dag

About MLflow & DVC

MLflow

  • Its Production Grade
  • Trace all of your expriements
  • Logging & taging your model

DVC

  • Its very lite weight for POC only
  • lite weight expriements tracker
  • It can perform Orchestration (Creating Pipelines)
Tip!

Press p or to see the previous file or, n or to see the next file

About

No description

Collaborators 1

Comments

Loading...