Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

yolov5_unit_test.py 2.7 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  1. import unittest
  2. import torch
  3. import torch.nn as nn
  4. from super_gradients.training.models.detection_models.yolov5 import YoLoV5N, YoLoV5S, YoLoV5M, YoLoV5L, YoLoV5X, Custom_YoLoV5
  5. from super_gradients.training.utils.utils import HpmStruct
  6. class TestYoloV5(unittest.TestCase):
  7. def setUp(self) -> None:
  8. self.arch_params = HpmStruct(num_classes=10)
  9. self.yolo_classes = [YoLoV5N, YoLoV5S, YoLoV5M, YoLoV5L, YoLoV5X, Custom_YoLoV5]
  10. def test_yolov5_creation(self):
  11. """
  12. test_yolov5_creation - Tests the creation of the model class itself
  13. :return:
  14. """
  15. dummy_input = torch.randn(1, 3, 320, 320)
  16. with torch.no_grad():
  17. # DEFAULT Custom_YoLoV5
  18. yolov5_custom = Custom_YoLoV5(arch_params=self.arch_params)
  19. self.assertTrue(isinstance(yolov5_custom._nms, nn.modules.linear.Identity))
  20. self.assertIsNotNone(yolov5_custom(dummy_input))
  21. # add NMS to the model
  22. yolov5_custom = Custom_YoLoV5(arch_params=HpmStruct(num_classes=10, add_nms=True))
  23. self.assertFalse(isinstance(yolov5_custom._nms, nn.modules.linear.Identity))
  24. self.assertIsNotNone(yolov5_custom(dummy_input))
  25. # fuse_conv_and_bn layers
  26. yolov5_custom = Custom_YoLoV5(arch_params=HpmStruct(num_classes=10, add_nms=False, fuse_conv_and_bn=True))
  27. self.assertIsNotNone(yolov5_custom(dummy_input))
  28. for yolo_cls in self.yolo_classes:
  29. yolo_model = yolo_cls(self.arch_params)
  30. # THIS SHOULD RUN THE FORWARD ONCE
  31. yolo_model.eval()
  32. output_standard = yolo_model(dummy_input)
  33. self.assertIsNotNone(output_standard)
  34. # THIS SHOULD RUN A TRAINING FORWARD
  35. yolo_model.train()
  36. output_train = yolo_model(dummy_input)
  37. self.assertIsNotNone(output_train)
  38. # THIS SHOULD RUN THE FORWARD AUGMENT
  39. yolo_model.eval()
  40. yolo_model.augmented_inference = True
  41. output_augment = yolo_model(dummy_input)
  42. self.assertIsNotNone(output_augment)
  43. def test_init_param_groups(self):
  44. train_params = HpmStruct(optimizer_params={'weight_decay': 0.01})
  45. for yolo_cls in self.yolo_classes:
  46. yolo_model = yolo_cls(self.arch_params)
  47. yolo_model.train()
  48. params_total = sum(p.numel() for p in yolo_model.parameters())
  49. param_groups = yolo_model.initialize_param_groups(0.1, train_params)
  50. optimizer_params_total = sum(p.numel() for g in param_groups for _, p in g['named_params'])
  51. self.assertEqual(params_total, optimizer_params_total)
  52. if __name__ == '__main__':
  53. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...