Are you sure you want to delete this access key?
Easily train or fine-tune SOTA computer vision models with one open source training library
Website • Why Use SG? • User Guide • Docs • SOTA Pretrained Models • Community • License • Deci Lab
Welcome to SuperGradients, a free, open-source training library for PyTorch-based deep learning models. SuperGradients allows you to train or fine-tune SOTA pre-trained models for all the most commonly applied computer vision tasks with just one training library. We currently support object detection, image classification and semantic segmentation for videos and images.
Built-in SOTA Models
Easily load and fine-tune production-ready, pre-trained SOTA models that incorporate best practices and validated hyper-parameters for achieving best-in-class accuracy.
Easily Reproduce our Results
Why do all the grind work, if we already did it for you? leverage tested and proven recipes & code examples for a wide range of computer vision models generated by our team of deep learning experts. Easily configure your own or use plug & play hyperparameters for training, dataset, and architecture.
Production Readiness and Ease of Integration
All SuperGradients models’ are production ready in the sense that they are compatible with deployment tools such as TensorRT (Nvidia) and OpenVino (Intel) and can be easily taken into production. With a few lines of code you can easily integrate the models into your codebase.
Check out SG full release notes.
Get started with our quick start notebook for image classification tasks on Google Colab for a quick and easy start using free GPU hardware.
![]() |
![]() |
![]() |
Get started with our quick start notebook for object detection tasks on Google Colab for a quick and easy start using free GPU hardware.
![]() |
![]() |
![]() |
Learn more about SuperGradients training components with our walkthrough notebook on Google Colab for an easy to use tutorial using free GPU hardware
![]() |
![]() |
![]() |
Learn more about SuperGradients transfer learning or fine tuning abilities with our COCO pre-trained YoloV5nano fine tuning into a sub-dataset of PASCAL VOC example notebook on Google Colab for an easy to use tutorial using free GPU hardware
![]() |
![]() |
![]() |
pip install git+https://github.com/Deci-AI/super-gradients.git@stable
Check SuperGradients Docs for full documentation, user guide, and examples.
Model | Dataset | Resolution | Top-1 | Top-5 | Latency b1T4 | Throughput b1T4 |
---|---|---|---|---|---|---|
EfficientNet B0 | ImageNet | 224x224 | 77.62 | 93.49 | 1.16ms | 862fps |
RegNetY200 | ImageNet | 224x224 | 70.88 | 89.35 | 1.07ms | 928.3fps |
RegNetY400 | ImageNet | 224x224 | 74.74 | 91.46 | 1.22ms | 816.5fps |
RegNetY600 | ImageNet | 224x224 | 76.18 | 92.34 | 1.19ms | 838.5fps |
RegNetY800 | ImageNet | 224x224 | 77.07 | 93.26 | 1.18ms | 841.4fps |
ResNet18 | ImageNet | 224x224 | 70.6 | 89.64 | 0.599ms | 1669fps |
ResNet34 | ImageNet | 224x224 | 74.13 | 91.7 | 0.89ms | 1123fps |
ResNet50 | ImageNet | 224x224 | 79.47 | 93.0 | 0.94ms | 1063fps |
MobileNetV3_large-150 epochs | ImageNet | 224x224 | 73.79 | 91.54 | 0.87ms | 1149fps |
MobileNetV3_large-300 epochs | ImageNet | 224x224 | 74.52 | 91.92 | 0.87ms | 1149fps |
MobileNetV3_small | ImageNet | 224x224 | 67.45 | 87.47 | 0.75ms | 1333fps |
MobileNetV2_w1 | ImageNet | 224x224 | 73.08 | 91.1 | 0.58ms | 1724fps |
NOTE: Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1
Model | Dataset | Resolution | mAPval 0.5:0.95 |
Latency b1T4 | Throughput b64T4 |
---|---|---|---|---|---|
YOLOv5 nano | COCO | 640x640 | 27.7 | 6.55ms | 177.62fps |
YOLOv5 small | COCO | 640x640 | 37.3 | 7.13ms | 159.44fps |
YOLOv5 medium | COCO | 640x640 | 45.2 | 8.95ms | 121.78fps |
YOLOv5 large | COCO | 640x640 | 48.0 | 11.49ms | 95.99fps |
NOTE: Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency) and batch size 64 (throughput)
Model | Dataset | Resolution | mIoU | Latency b1T4 | Throughput b1T4 | Latency b1T4 including IO |
---|---|---|---|---|---|---|
DDRNet23 | Cityscapes | 1024x2048 | 78.65 | 7.62ms | 131.3fps | 25.94ms |
DDRNet23 slim | Cityscapes | 1024x2048 | 76.6 | 3.56ms | 280.5fps | 22.80ms |
STDC1-Seg50 | Cityscapes | 512x1024 | 74.36 | 2.83ms | 353.3fps | 12.57ms |
STDC1-Seg75 | Cityscapes | 768x1536 | 76.87 | 5.71ms | 175.1fps | 26.70ms |
STDC2-Seg50 | Cityscapes | 512x1024 | 75.27 | 3.74ms | 267.2fps | 13.89ms |
STDC2-Seg75 | Cityscapes | 768x1536 | 78.93 | 7.35ms | 135.9fps | 28.18ms |
RegSeg (exp48) | Cityscapes | 1024x2048 | 78.15 | 13.09ms | 76.4fps | 41.88ms |
Larger RegSeg (exp53) | Cityscapes | 1024x2048 | 79.2 | 24.82ms | 40.3fps | 51.87ms |
ShelfNet_LW_34 | COCO Segmentation (21 classes from PASCAL including background) | 512x512 | 65.1 | - | - | - |
NOTE: Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency), and not including IO
To learn about making a contribution to SuperGradients, please see our Contribution page.
Our awesome contributors:
Made with contrib.rocks.
If you are using SuperGradients library or benchmarks in your research, please cite SuperGradients deep learning training library.
If you want to be a part of SuperGradients growing community, hear about all the exciting news and updates, need help, request for advanced features, or want to file a bug or issue report, we would love to welcome you aboard!
Slack is the place to be and ask questions about SuperGradients and get support. Click here to join our Slack
To report a bug, file an issue on GitHub.
Join the SG Newsletter for staying up to date with new features and models, important announcements, and upcoming events.
For a short meeting with us, use this link and choose your preferred time.
This project is released under the Apache 2.0 license.
Deci Lab is our end to end platform for building, optimizing and deploying deep learning models to production.
Sign up for our FREE Community Tier to enjoy immediate improvement in throughput, latency, memory footprint and model size.
Features:
Sign up for Deci Lab for free here
Press p or to see the previous file or, n or to see the next file
Browsing data directories saved to S3 is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
super-gradients is now integrated with AWS S3!
Are you sure you want to delete this access key?
Browsing data directories saved to Google Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
super-gradients is now integrated with Google Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to Azure Cloud Storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
super-gradients is now integrated with Azure Cloud Storage!
Are you sure you want to delete this access key?
Browsing data directories saved to S3 compatible storage is possible with DAGsHub. Let's configure your repository to easily display your data in the context of any commit!
super-gradients is now integrated with your S3 compatible storage!
Are you sure you want to delete this access key?