1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.metrics package — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
- <script src="_static/jquery.js"></script>
- <script src="_static/underscore.js"></script>
- <script src="_static/doctools.js"></script>
- <script src="_static/js/theme.js"></script>
- <link rel="index" title="Index" href="genindex.html" />
- <link rel="search" title="Search" href="search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="welcome.html">SuperGradients</a></li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="index.html" class="icon icon-home"></a> »</li>
- <li>super_gradients.training.metrics package</li>
- <li class="wy-breadcrumbs-aside">
- <a href="_sources/super_gradients.training.metrics.rst.txt" rel="nofollow"> View page source</a>
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <section id="super-gradients-training-metrics-package">
- <h1>super_gradients.training.metrics package<a class="headerlink" href="#super-gradients-training-metrics-package" title="Permalink to this headline"></a></h1>
- <section id="submodules">
- <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
- </section>
- <section id="module-super_gradients.training.metrics.classification_metrics">
- <span id="super-gradients-training-metrics-classification-metrics-module"></span><h2>super_gradients.training.metrics.classification_metrics module<a class="headerlink" href="#module-super_gradients.training.metrics.classification_metrics" title="Permalink to this headline"></a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.accuracy">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.classification_metrics.</span></span><span class="sig-name descname"><span class="pre">accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">topk</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">(1)</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.accuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Computes the precision@k for the specified values of k
- :param output: Tensor / Numpy / List</p>
- <blockquote>
- <div><p>The prediction</p>
- </div></blockquote>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>target</strong> – Tensor / Numpy / List
- The corresponding lables</p></li>
- <li><p><strong>topk</strong> – tuple
- The type of accuracy to calculate, e.g. topk=(1,5) returns accuracy for top-1 and top-5</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.classification_metrics.</span></span><span class="sig-name descname"><span class="pre">Accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.classification.accuracy.Accuracy</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Accuracy.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy.update" title="Permalink to this definition"></a></dt>
- <dd><p>Update state with predictions and targets. See
- <span class="xref std std-ref">references/modules:input types</span> for more information on input
- types.</p>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>preds</strong> – Predictions from model (logits, probabilities, or labels)</p></li>
- <li><p><strong>target</strong> – Ground truth labels</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy.correct">
- <span class="sig-name descname"><span class="pre">correct</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy.correct" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy.total">
- <span class="sig-name descname"><span class="pre">total</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy.total" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Top5">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.classification_metrics.</span></span><span class="sig-name descname"><span class="pre">Top5</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Top5" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Top5.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Top5.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Top5.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Top5.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.classification_metrics.</span></span><span class="sig-name descname"><span class="pre">ToyTestClassificationMetric</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <p>Dummy classification Mettric object returning 0 always (for testing).</p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span> → <span class="pre">None</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- </section>
- <section id="module-super_gradients.training.metrics.detection_metrics">
- <span id="super-gradients-training-metrics-detection-metrics-module"></span><h2>super_gradients.training.metrics.detection_metrics module<a class="headerlink" href="#module-super_gradients.training.metrics.detection_metrics" title="Permalink to this headline"></a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.compute_ap">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.detection_metrics.</span></span><span class="sig-name descname"><span class="pre">compute_ap</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">recall</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">precision</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'interp'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#compute_ap"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.compute_ap" title="Permalink to this definition"></a></dt>
- <dd><p>Compute the average precision, given the recall and precision curves.
- Source: <a class="reference external" href="https://github.com/rbgirshick/py-faster-rcnn">https://github.com/rbgirshick/py-faster-rcnn</a>.
- # Arguments</p>
- <blockquote>
- <div><dl class="field-list simple">
- <dt class="field-odd">param recall</dt>
- <dd class="field-odd"><p>The recall curve - ndarray [1, points in curve]</p>
- </dd>
- <dt class="field-even">param precision</dt>
- <dd class="field-even"><p>The precision curve - ndarray [1, points in curve]</p>
- </dd>
- <dt class="field-odd">param method</dt>
- <dd class="field-odd"><p>‘continuous’, ‘interp’</p>
- </dd>
- </dl>
- </div></blockquote>
- <dl class="simple">
- <dt># Returns</dt><dd><p>The average precision as computed in py-faster-rcnn.</p>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.ap_per_class">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.detection_metrics.</span></span><span class="sig-name descname"><span class="pre">ap_per_class</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tp</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">conf</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pred_cls</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_cls</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#ap_per_class"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.ap_per_class" title="Permalink to this definition"></a></dt>
- <dd><p>Compute the average precision, given the recall and precision curves.
- Source: <a class="reference external" href="https://github.com/rafaelpadilla/Object-Detection-Metrics">https://github.com/rafaelpadilla/Object-Detection-Metrics</a>.
- # Arguments</p>
- <blockquote>
- <div><p>tp: True positives (nparray, nx1 or nx10).
- conf: Objectness value from 0-1 (nparray).
- pred_cls: Predicted object classes (nparray).
- target_cls: True object classes (nparray).</p>
- </div></blockquote>
- <dl class="simple">
- <dt># Returns</dt><dd><p>The average precision as computed in py-faster-rcnn.</p>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.detection_metrics.</span></span><span class="sig-name descname"><span class="pre">DetectionMetrics</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="pre">num_cls</span></em>, <em class="sig-param"><span class="pre">post_prediction_callback:</span> <span class="pre">Optional[super_gradients.training.utils.detection_utils.DetectionPostPredictionCallback]</span> <span class="pre">=</span> <span class="pre">None</span></em>, <em class="sig-param"><span class="pre">iou_thres:</span> <span class="pre">super_gradients.training.utils.detection_utils.IouThreshold</span> <span class="pre">=</span> <span class="pre"><IouThreshold.MAP_05_TO_095:</span> <span class="pre">(0.5</span></em>, <em class="sig-param"><span class="pre">0.95)></span></em>, <em class="sig-param"><span class="pre">dist_sync_on_step=False</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inputs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- </section>
- <section id="module-super_gradients.training.metrics.metric_utils">
- <span id="super-gradients-training-metrics-metric-utils-module"></span><h2>super_gradients.training.metrics.metric_utils module<a class="headerlink" href="#module-super_gradients.training.metrics.metric_utils" title="Permalink to this headline"></a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.calc_batch_prediction_detection_metrics_per_class">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">calc_batch_prediction_detection_metrics_per_class</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dataset_interface</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">iou_thres</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">silent_mode</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">images_counter</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">per_class_verbosity</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">class_names</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">test_loss</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#calc_batch_prediction_detection_metrics_per_class"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.calc_batch_prediction_detection_metrics_per_class" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_logging_values">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_logging_values</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">loss_loggings</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="super_gradients.training.utils.html#super_gradients.training.utils.utils.AverageMeter" title="super_gradients.training.utils.utils.AverageMeter"><span class="pre">super_gradients.training.utils.utils.AverageMeter</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchmetrics.collections.MetricCollection</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">criterion</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_logging_values"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_logging_values" title="Permalink to this definition"></a></dt>
- <dd><p>@param loss_loggings: AverageMeter running average for the loss items
- @param metrics: MetricCollection object for running user specified metrics
- @param criterion the object loss_loggings average meter is monitoring, when set to None- only the metrics values are
- computed and returned.</p>
- <p>@return: tuple of the computed values</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_metrics_titles">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_metrics_titles</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_collection</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchmetrics.collections.MetricCollection</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_metrics_titles"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_metrics_titles" title="Permalink to this definition"></a></dt>
- <dd><p>@param metrics_collection: MetricCollection object for running user specified metrics
- @return: list of all the names of the computed values list(str)</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_metrics_results_tuple">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_metrics_results_tuple</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_collection</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchmetrics.collections.MetricCollection</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_metrics_results_tuple"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_metrics_results_tuple" title="Permalink to this definition"></a></dt>
- <dd><p>@param metrics_collection: metrics collection of the user specified metrics
- @type metrics_collection
- @return: tuple of metrics values</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.flatten_metrics_dict">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">flatten_metrics_dict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_dict</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">dict</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#flatten_metrics_dict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.flatten_metrics_dict" title="Permalink to this definition"></a></dt>
- <dd><p>:param metrics_dict - dictionary of metric values where values can also be dictionaries containing subvalues
- (in the case of compound metrics)</p>
- <p>@return: flattened dict of metric values i.e {metric1_name: metric1_value…}</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_metrics_dict">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_metrics_dict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_tuple</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_collection</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss_logging_item_names</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_metrics_dict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_metrics_dict" title="Permalink to this definition"></a></dt>
- <dd><p>Returns a dictionary with the epoch results as values and their names as keys.
- @param metrics_tuple: the result tuple
- @param metrics_collection: MetricsCollection
- @param loss_logging_item_names: loss component’s names.
- @return: dict</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_train_loop_description_dict">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_train_loop_description_dict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_tuple</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_collection</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss_logging_item_names</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">log_items</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_train_loop_description_dict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_train_loop_description_dict" title="Permalink to this definition"></a></dt>
- <dd><dl class="simple">
- <dt>Returns a dictionary with the epoch’s logging items as values and their names as keys, with the purpose of</dt><dd><p>passing it as a description to tqdm’s progress bar.</p>
- </dd>
- </dl>
- <p>@param metrics_tuple: the result tuple
- @param metrics_collection: MetricsCollection
- @param loss_logging_item_names: loss component’s names.
- @param log_items additional logging items to be rendered.
- @return: dict</p>
- </dd></dl>
- </section>
- <section id="module-super_gradients.training.metrics.segmentation_metrics">
- <span id="super-gradients-training-metrics-segmentation-metrics-module"></span><h2>super_gradients.training.metrics.segmentation_metrics module<a class="headerlink" href="#module-super_gradients.training.metrics.segmentation_metrics" title="Permalink to this headline"></a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.batch_pix_accuracy">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">batch_pix_accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">predict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#batch_pix_accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.batch_pix_accuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Batch Pixel Accuracy
- :param predict: input 4D tensor
- :param target: label 3D tensor</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.batch_intersection_union">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">batch_intersection_union</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">predict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nclass</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#batch_intersection_union"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.batch_intersection_union" title="Permalink to this definition"></a></dt>
- <dd><p>Batch Intersection of Union
- :param predict: input 4D tensor
- :param target: label 3D tensor
- :param nclass: number of categories (int)</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.pixel_accuracy">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">pixel_accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">im_pred</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">im_lab</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#pixel_accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.pixel_accuracy" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.intersection_and_union">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">intersection_and_union</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">im_pred</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">im_lab</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_class</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#intersection_and_union"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.intersection_and_union" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.PixelAccuracy">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">PixelAccuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ignore_label</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">-</span> <span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.IoU">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">IoU</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">num_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#IoU"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.IoU" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.classification.iou.IoU</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.IoU.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#IoU.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.IoU.update" title="Permalink to this definition"></a></dt>
- <dd><p>Update state with predictions and targets.</p>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>preds</strong> – Predictions from model</p></li>
- <li><p><strong>target</strong> – Ground truth values</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.IoU.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.IoU.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- </section>
- <section id="module-super_gradients.training.metrics">
- <span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-super_gradients.training.metrics" title="Permalink to this headline"></a></h2>
- </section>
- </section>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|