Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train.py 2.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  1. from super_gradients.training import SgModel
  2. from super_gradients.training import MultiGPUMode
  3. from dataset import UserDataset
  4. from model import ResNet, BasicBlock
  5. from loss import LabelSmoothingCrossEntropyLoss
  6. from metrics import Accuracy, Top5
  7. def main():
  8. # ------------------ Loading The Model From Model.py----------------
  9. arch_params = {'num_classes': 10}
  10. model = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=arch_params['num_classes'])
  11. deci_classification_model = SgModel('client_model_training',
  12. model_checkpoints_location='local',
  13. multi_gpu=MultiGPUMode.OFF)
  14. # if a torch.nn.Module is provided when building the model, the model will be integrated into deci model class
  15. deci_classification_model.build_model(model, arch_params=arch_params, load_checkpoint=False)
  16. # ------------------ Loading The Dataset From Dataset.py----------------
  17. dataset_params = {"batch_size": 256}
  18. dataset = UserDataset(dataset_params)
  19. deci_classification_model.connect_dataset_interface(dataset)
  20. # ------------------ Loading The Loss From Loss.py -----------------
  21. loss = LabelSmoothingCrossEntropyLoss()
  22. # ------------------ Defining the metrics we wish to log -----------------
  23. train_metrics_list = [Accuracy(), Top5()]
  24. valid_metrics_list = [Accuracy(), Top5()]
  25. # ------------------ Training -----------------
  26. train_params = {"max_epochs": 250,
  27. "lr_updates": [100, 150, 200],
  28. "lr_decay_factor": 0.1,
  29. "lr_mode": "step",
  30. "lr_warmup_epochs": 0,
  31. "initial_lr": 0.1,
  32. "loss": loss,
  33. "criterion_params": {},
  34. "optimizer": "SGD",
  35. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  36. "launch_tensorboard": False,
  37. "train_metrics_list": train_metrics_list,
  38. "valid_metrics_list": valid_metrics_list,
  39. "loss_logging_items_names": ["Loss"],
  40. "metric_to_watch": "Accuracy",
  41. "greater_metric_to_watch_is_better": True}
  42. deci_classification_model.train(train_params)
  43. if __name__ == '__main__':
  44. main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...