Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

model.py 6.5 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
  1. """
  2. This file is used to define the model used for training. For example, in this template, we define ResNet50.
  3. One may use existing models from torchvision as well (e.g., torchvision.models.resnet50)
  4. """
  5. import torch.nn as nn
  6. import torch.nn.functional as F
  7. from collections import OrderedDict
  8. class BasicBlock(nn.Module):
  9. expansion = 1
  10. def __init__(self, in_planes, planes, stride=1):
  11. super(BasicBlock, self).__init__()
  12. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
  13. self.bn1 = nn.BatchNorm2d(planes)
  14. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
  15. self.bn2 = nn.BatchNorm2d(planes)
  16. self.shortcut = nn.Sequential()
  17. if stride != 1 or in_planes != self.expansion * planes:
  18. self.shortcut = nn.Sequential(
  19. nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
  20. nn.BatchNorm2d(self.expansion * planes)
  21. )
  22. def forward(self, x):
  23. out = F.relu(self.bn1(self.conv1(x)))
  24. out = self.bn2(self.conv2(out))
  25. out += self.shortcut(x)
  26. out = F.relu(out)
  27. return out
  28. class Bottleneck(nn.Module):
  29. expansion = 4
  30. def __init__(self, in_planes, planes, stride=1):
  31. super(Bottleneck, self).__init__()
  32. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
  33. self.bn1 = nn.BatchNorm2d(planes)
  34. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
  35. self.bn2 = nn.BatchNorm2d(planes)
  36. self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
  37. self.bn3 = nn.BatchNorm2d(self.expansion * planes)
  38. self.shortcut = nn.Sequential()
  39. if stride != 1 or in_planes != self.expansion * planes:
  40. self.shortcut = nn.Sequential(
  41. nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
  42. nn.BatchNorm2d(self.expansion * planes)
  43. )
  44. def forward(self, x):
  45. out = F.relu(self.bn1(self.conv1(x)))
  46. out = F.relu(self.bn2(self.conv2(out)))
  47. out = self.bn3(self.conv3(out))
  48. out += self.shortcut(x)
  49. out = F.relu(out)
  50. return out
  51. def width_multiplier(original, factor):
  52. return int(original * factor)
  53. class ResNet(nn.Module):
  54. def __init__(self, block, num_blocks: list, num_classes: int = 10, width_mult: float = 1,
  55. input_batchnorm: bool = False, backbone_mode: bool = False):
  56. super(ResNet, self).__init__()
  57. self.backbone_mode = backbone_mode
  58. self.structure = [num_blocks, width_mult]
  59. self.in_planes = width_multiplier(64, width_mult)
  60. self.input_batchnorm = input_batchnorm
  61. if self.input_batchnorm:
  62. self.bn0 = nn.BatchNorm2d(3)
  63. self.conv1 = nn.Conv2d(3, width_multiplier(64, width_mult), kernel_size=7, stride=2, padding=3, bias=False)
  64. self.bn1 = nn.BatchNorm2d(width_multiplier(64, width_mult))
  65. self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
  66. self.layer1 = self._make_layer(block, width_multiplier(64, width_mult), num_blocks[0], stride=1)
  67. self.layer2 = self._make_layer(block, width_multiplier(128, width_mult), num_blocks[1], stride=2)
  68. self.layer3 = self._make_layer(block, width_multiplier(256, width_mult), num_blocks[2], stride=2)
  69. self.layer4 = self._make_layer(block, width_multiplier(512, width_mult), num_blocks[3], stride=2)
  70. if not self.backbone_mode:
  71. # IF RESNET IS IN BACK_BONE MODE WE DON'T NEED THE FINAL CLASSIFIER LAYERS, BUT ONLY THE NET BLOCK STRUCTURE
  72. self.linear = nn.Linear(width_multiplier(512, width_mult) * block.expansion, num_classes)
  73. self.avgpool = nn.AdaptiveAvgPool2d(1)
  74. def _make_layer(self, block, planes, num_blocks, stride):
  75. strides = [stride] + [1] * (num_blocks - 1)
  76. layers = []
  77. if num_blocks == 0:
  78. # When the number of blocks is zero but spatial dimension and/or number of filters about to change we put 1
  79. # 3X3 conv layer to make this change to the new dimensions.
  80. if stride != 1 or self.in_planes != planes:
  81. layers.append(nn.Sequential(
  82. nn.Conv2d(self.in_planes, planes, kernel_size=3, stride=stride, bias=False, padding=1),
  83. nn.BatchNorm2d(planes))
  84. )
  85. self.in_planes = planes
  86. else:
  87. for stride in strides:
  88. layers.append(block(self.in_planes, planes, stride))
  89. self.in_planes = planes * block.expansion
  90. return nn.Sequential(*layers)
  91. def forward(self, x):
  92. if self.input_batchnorm:
  93. x = self.bn0(x)
  94. out = F.relu(self.bn1(self.conv1(x)))
  95. out = self.maxpool(out)
  96. out = self.layer1(out)
  97. out = self.layer2(out)
  98. out = self.layer3(out)
  99. out = self.layer4(out)
  100. if not self.backbone_mode:
  101. # IF RESNET IS *NOT* IN BACK_BONE MODE WE NEED THE FINAL CLASSIFIER LAYERS OUTPUTS
  102. out = self.avgpool(out)
  103. out = out.squeeze(dim=2).squeeze(dim=2)
  104. out = self.linear(out)
  105. return out
  106. def load_state_dict(self, state_dict, strict=True):
  107. """
  108. load_state_dict - Overloads the base method and calls it to load a modified dict for usage as a backbone
  109. :param state_dict: The state_dict to load
  110. :param strict: strict loading (see super() docs)
  111. """
  112. pretrained_model_weights_dict = state_dict.copy()
  113. if self.backbone_mode:
  114. # FIRST LET'S POP THE LAST TWO LAYERS - NO NEED TO LOAD THEIR VALUES SINCE THEY ARE IRRELEVANT AS A BACKBONE
  115. pretrained_model_weights_dict.popitem()
  116. pretrained_model_weights_dict.popitem()
  117. pretrained_backbone_weights_dict = OrderedDict()
  118. for layer_name, weights in pretrained_model_weights_dict.items():
  119. # GET THE LAYER NAME WITHOUT THE 'module.' PREFIX
  120. name_without_module_prefix = layer_name.split('module.')[1]
  121. # MAKE SURE THESE ARE NOT THE FINAL LAYERS
  122. pretrained_backbone_weights_dict[name_without_module_prefix] = weights
  123. # RETURNING THE UNMODIFIED/MODIFIED STATE DICT DEPENDING ON THE backbone_mode VALUE
  124. super().load_state_dict(pretrained_backbone_weights_dict, strict)
  125. else:
  126. super().load_state_dict(pretrained_model_weights_dict, strict)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...