1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
- """
- This file is used to define the model used for training. For example, in this template, we define ResNet50.
- One may use existing models from torchvision as well (e.g., torchvision.models.resnet50)
- """
- import torch.nn as nn
- import torch.nn.functional as F
- from collections import OrderedDict
- class BasicBlock(nn.Module):
- expansion = 1
- def __init__(self, in_planes, planes, stride=1):
- super(BasicBlock, self).__init__()
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion * planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(self.expansion * planes)
- )
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.bn2(self.conv2(out))
- out += self.shortcut(x)
- out = F.relu(out)
- return out
- class Bottleneck(nn.Module):
- expansion = 4
- def __init__(self, in_planes, planes, stride=1):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(self.expansion * planes)
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion * planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(self.expansion * planes)
- )
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = F.relu(self.bn2(self.conv2(out)))
- out = self.bn3(self.conv3(out))
- out += self.shortcut(x)
- out = F.relu(out)
- return out
- def width_multiplier(original, factor):
- return int(original * factor)
- class ResNet(nn.Module):
- def __init__(self, block, num_blocks: list, num_classes: int = 10, width_mult: float = 1,
- input_batchnorm: bool = False, backbone_mode: bool = False):
- super(ResNet, self).__init__()
- self.backbone_mode = backbone_mode
- self.structure = [num_blocks, width_mult]
- self.in_planes = width_multiplier(64, width_mult)
- self.input_batchnorm = input_batchnorm
- if self.input_batchnorm:
- self.bn0 = nn.BatchNorm2d(3)
- self.conv1 = nn.Conv2d(3, width_multiplier(64, width_mult), kernel_size=7, stride=2, padding=3, bias=False)
- self.bn1 = nn.BatchNorm2d(width_multiplier(64, width_mult))
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, width_multiplier(64, width_mult), num_blocks[0], stride=1)
- self.layer2 = self._make_layer(block, width_multiplier(128, width_mult), num_blocks[1], stride=2)
- self.layer3 = self._make_layer(block, width_multiplier(256, width_mult), num_blocks[2], stride=2)
- self.layer4 = self._make_layer(block, width_multiplier(512, width_mult), num_blocks[3], stride=2)
- if not self.backbone_mode:
- # IF RESNET IS IN BACK_BONE MODE WE DON'T NEED THE FINAL CLASSIFIER LAYERS, BUT ONLY THE NET BLOCK STRUCTURE
- self.linear = nn.Linear(width_multiplier(512, width_mult) * block.expansion, num_classes)
- self.avgpool = nn.AdaptiveAvgPool2d(1)
- def _make_layer(self, block, planes, num_blocks, stride):
- strides = [stride] + [1] * (num_blocks - 1)
- layers = []
- if num_blocks == 0:
- # When the number of blocks is zero but spatial dimension and/or number of filters about to change we put 1
- # 3X3 conv layer to make this change to the new dimensions.
- if stride != 1 or self.in_planes != planes:
- layers.append(nn.Sequential(
- nn.Conv2d(self.in_planes, planes, kernel_size=3, stride=stride, bias=False, padding=1),
- nn.BatchNorm2d(planes))
- )
- self.in_planes = planes
- else:
- for stride in strides:
- layers.append(block(self.in_planes, planes, stride))
- self.in_planes = planes * block.expansion
- return nn.Sequential(*layers)
- def forward(self, x):
- if self.input_batchnorm:
- x = self.bn0(x)
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.maxpool(out)
- out = self.layer1(out)
- out = self.layer2(out)
- out = self.layer3(out)
- out = self.layer4(out)
- if not self.backbone_mode:
- # IF RESNET IS *NOT* IN BACK_BONE MODE WE NEED THE FINAL CLASSIFIER LAYERS OUTPUTS
- out = self.avgpool(out)
- out = out.squeeze(dim=2).squeeze(dim=2)
- out = self.linear(out)
- return out
- def load_state_dict(self, state_dict, strict=True):
- """
- load_state_dict - Overloads the base method and calls it to load a modified dict for usage as a backbone
- :param state_dict: The state_dict to load
- :param strict: strict loading (see super() docs)
- """
- pretrained_model_weights_dict = state_dict.copy()
- if self.backbone_mode:
- # FIRST LET'S POP THE LAST TWO LAYERS - NO NEED TO LOAD THEIR VALUES SINCE THEY ARE IRRELEVANT AS A BACKBONE
- pretrained_model_weights_dict.popitem()
- pretrained_model_weights_dict.popitem()
- pretrained_backbone_weights_dict = OrderedDict()
- for layer_name, weights in pretrained_model_weights_dict.items():
- # GET THE LAYER NAME WITHOUT THE 'module.' PREFIX
- name_without_module_prefix = layer_name.split('module.')[1]
- # MAKE SURE THESE ARE NOT THE FINAL LAYERS
- pretrained_backbone_weights_dict[name_without_module_prefix] = weights
- # RETURNING THE UNMODIFIED/MODIFIED STATE DICT DEPENDING ON THE backbone_mode VALUE
- super().load_state_dict(pretrained_backbone_weights_dict, strict)
- else:
- super().load_state_dict(pretrained_model_weights_dict, strict)
|