Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

ssd.html 40 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.models.ssd &mdash; SuperGradients 1.0 documentation</title>
  7. <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
  9. <!--[if lt IE 9]>
  10. <script src="../../../../_static/js/html5shiv.min.js"></script>
  11. <![endif]-->
  12. <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
  13. <script src="../../../../_static/jquery.js"></script>
  14. <script src="../../../../_static/underscore.js"></script>
  15. <script src="../../../../_static/doctools.js"></script>
  16. <script src="../../../../_static/js/theme.js"></script>
  17. <link rel="index" title="Index" href="../../../../genindex.html" />
  18. <link rel="search" title="Search" href="../../../../search.html" />
  19. </head>
  20. <body class="wy-body-for-nav">
  21. <div class="wy-grid-for-nav">
  22. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  23. <div class="wy-side-scroll">
  24. <div class="wy-side-nav-search" >
  25. <a href="../../../../index.html" class="icon icon-home"> SuperGradients
  26. </a>
  27. <div role="search">
  28. <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
  29. <input type="text" name="q" placeholder="Search docs" />
  30. <input type="hidden" name="check_keywords" value="yes" />
  31. <input type="hidden" name="area" value="default" />
  32. </form>
  33. </div>
  34. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  35. <p class="caption"><span class="caption-text">Contents:</span></p>
  36. <ul>
  37. <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html">Introduction</a></li>
  38. <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html#installation">Installation</a></li>
  39. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">super_gradients.training package</a></li>
  40. </ul>
  41. </div>
  42. </div>
  43. </nav>
  44. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  45. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  46. <a href="../../../../index.html">SuperGradients</a>
  47. </nav>
  48. <div class="wy-nav-content">
  49. <div class="rst-content">
  50. <div role="navigation" aria-label="Page navigation">
  51. <ul class="wy-breadcrumbs">
  52. <li><a href="../../../../index.html" class="icon icon-home"></a> &raquo;</li>
  53. <li><a href="../../../index.html">Module code</a> &raquo;</li>
  54. <li>super_gradients.training.models.ssd</li>
  55. <li class="wy-breadcrumbs-aside">
  56. </li>
  57. </ul>
  58. <hr/>
  59. </div>
  60. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  61. <div itemprop="articleBody">
  62. <h1>Source code for super_gradients.training.models.ssd</h1><div class="highlight"><pre>
  63. <span></span><span class="kn">import</span> <span class="nn">torch</span>
  64. <span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
  65. <span class="kn">from</span> <span class="nn">super_gradients.training.models</span> <span class="kn">import</span> <span class="n">MobileNet</span><span class="p">,</span> <span class="n">SgModule</span><span class="p">,</span> <span class="n">MobileNetV2</span><span class="p">,</span> <span class="n">InvertedResidual</span>
  66. <span class="kn">from</span> <span class="nn">super_gradients.training.utils</span> <span class="kn">import</span> <span class="n">HpmStruct</span><span class="p">,</span> <span class="n">utils</span>
  67. <span class="kn">from</span> <span class="nn">super_gradients.training.utils.module_utils</span> <span class="kn">import</span> <span class="n">MultiOutputModule</span>
  68. <span class="n">DEFAULT_SSD_ARCH_PARAMS</span> <span class="o">=</span> <span class="p">{</span>
  69. <span class="s2">&quot;num_defaults&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span>
  70. <span class="s2">&quot;additional_blocks_bottleneck_channels&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mi">256</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">]</span>
  71. <span class="p">}</span>
  72. <span class="n">DEFAULT_SSD_MOBILENET_V1_ARCH_PARAMS</span> <span class="o">=</span> <span class="p">{</span>
  73. <span class="s2">&quot;out_channels&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mi">512</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">256</span><span class="p">],</span>
  74. <span class="s2">&quot;kernel_sizes&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span>
  75. <span class="p">}</span>
  76. <span class="n">DEFAULT_SSD_LITE_MOBILENET_V2_ARCH_PARAMS</span> <span class="o">=</span> <span class="p">{</span>
  77. <span class="s2">&quot;out_channels&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mi">576</span><span class="p">,</span> <span class="mi">1280</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">64</span><span class="p">],</span>
  78. <span class="s2">&quot;expand_ratios&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.25</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.25</span><span class="p">],</span>
  79. <span class="s2">&quot;num_defaults&quot;</span><span class="p">:</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">],</span>
  80. <span class="s2">&quot;lite&quot;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
  81. <span class="s2">&quot;width_mult&quot;</span><span class="p">:</span> <span class="mf">1.0</span><span class="p">,</span>
  82. <span class="s2">&quot;output_paths&quot;</span><span class="p">:</span> <span class="p">[[</span><span class="mi">14</span><span class="p">,</span> <span class="s1">&#39;conv&#39;</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="mi">18</span><span class="p">]</span>
  83. <span class="p">}</span>
  84. <div class="viewcode-block" id="SeperableConv2d"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.ssd.SeperableConv2d">[docs]</a><span class="k">def</span> <span class="nf">SeperableConv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
  85. <span class="sd">&quot;&quot;&quot;Replace Conv2d with a depthwise Conv2d and Pointwise Conv2d.</span>
  86. <span class="sd"> &quot;&quot;&quot;</span>
  87. <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
  88. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span>
  89. <span class="n">groups</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="n">padding</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">),</span>
  90. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">in_channels</span><span class="p">),</span>
  91. <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
  92. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">out_channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
  93. <span class="p">)</span></div>
  94. <div class="viewcode-block" id="SSD"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.ssd.SSD">[docs]</a><span class="k">class</span> <span class="nc">SSD</span><span class="p">(</span><span class="n">SgModule</span><span class="p">):</span>
  95. <span class="sd">&quot;&quot;&quot;</span>
  96. <span class="sd"> paper: https://arxiv.org/pdf/1512.02325.pdf</span>
  97. <span class="sd"> based on code: https://github.com/NVIDIA/DeepLearningExamples</span>
  98. <span class="sd"> &quot;&quot;&quot;</span>
  99. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">backbone</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">):</span>
  100. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
  101. <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span> <span class="o">=</span> <span class="n">HpmStruct</span><span class="p">(</span><span class="o">**</span><span class="n">DEFAULT_SSD_ARCH_PARAMS</span><span class="p">)</span>
  102. <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="o">**</span><span class="n">arch_params</span><span class="o">.</span><span class="n">to_dict</span><span class="p">())</span>
  103. <span class="n">paths</span> <span class="o">=</span> <span class="n">utils</span><span class="o">.</span><span class="n">get_param</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">&#39;output_paths&#39;</span><span class="p">)</span>
  104. <span class="k">if</span> <span class="n">paths</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
  105. <span class="bp">self</span><span class="o">.</span><span class="n">backbone</span> <span class="o">=</span> <span class="n">MultiOutputModule</span><span class="p">(</span><span class="n">backbone</span><span class="p">,</span> <span class="n">paths</span><span class="p">)</span>
  106. <span class="k">else</span><span class="p">:</span>
  107. <span class="bp">self</span><span class="o">.</span><span class="n">backbone</span> <span class="o">=</span> <span class="n">backbone</span>
  108. <span class="n">lite</span> <span class="o">=</span> <span class="n">utils</span><span class="o">.</span><span class="n">get_param</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="s1">&#39;lite&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
  109. <span class="c1"># NUMBER OF CLASSES + 1 NO_CLASS</span>
  110. <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span>
  111. <span class="bp">self</span><span class="o">.</span><span class="n">_build_additional_blocks</span><span class="p">()</span>
  112. <span class="bp">self</span><span class="o">.</span><span class="n">_build_location_and_conf_branches</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">out_channels</span><span class="p">,</span> <span class="n">lite</span><span class="p">)</span>
  113. <span class="bp">self</span><span class="o">.</span><span class="n">_init_weights</span><span class="p">()</span>
  114. <span class="k">def</span> <span class="nf">_build_location_and_conf_branches</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">lite</span><span class="p">:</span> <span class="nb">bool</span><span class="p">):</span>
  115. <span class="sd">&quot;&quot;&quot;Add the sdd blocks after the backbone&quot;&quot;&quot;</span>
  116. <span class="bp">self</span><span class="o">.</span><span class="n">num_defaults</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">num_defaults</span>
  117. <span class="bp">self</span><span class="o">.</span><span class="n">loc</span> <span class="o">=</span> <span class="p">[]</span>
  118. <span class="bp">self</span><span class="o">.</span><span class="n">conf</span> <span class="o">=</span> <span class="p">[]</span>
  119. <span class="n">conv_to_use</span> <span class="o">=</span> <span class="n">SeperableConv2d</span> <span class="k">if</span> <span class="n">lite</span> <span class="k">else</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span>
  120. <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="p">(</span><span class="n">nd</span><span class="p">,</span> <span class="n">oc</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_defaults</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">)):</span>
  121. <span class="k">if</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_defaults</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">:</span>
  122. <span class="bp">self</span><span class="o">.</span><span class="n">loc</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">conv_to_use</span><span class="p">(</span><span class="n">oc</span><span class="p">,</span> <span class="n">nd</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
  123. <span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">conv_to_use</span><span class="p">(</span><span class="n">oc</span><span class="p">,</span> <span class="n">nd</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
  124. <span class="k">else</span><span class="p">:</span>
  125. <span class="bp">self</span><span class="o">.</span><span class="n">loc</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">oc</span><span class="p">,</span> <span class="n">nd</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
  126. <span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">oc</span><span class="p">,</span> <span class="n">nd</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
  127. <span class="bp">self</span><span class="o">.</span><span class="n">loc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">loc</span><span class="p">)</span>
  128. <span class="bp">self</span><span class="o">.</span><span class="n">conf</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="p">)</span>
  129. <span class="k">def</span> <span class="nf">_build_additional_blocks</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  130. <span class="n">input_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">out_channels</span>
  131. <span class="n">kernel_sizes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">kernel_sizes</span>
  132. <span class="n">bottleneck_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">additional_blocks_bottleneck_channels</span>
  133. <span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span> <span class="o">=</span> <span class="p">[]</span>
  134. <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="p">(</span><span class="n">input_size</span><span class="p">,</span> <span class="n">output_size</span><span class="p">,</span> <span class="n">channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span>
  135. <span class="nb">zip</span><span class="p">(</span><span class="n">input_size</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">input_size</span><span class="p">[</span><span class="mi">1</span><span class="p">:],</span> <span class="n">bottleneck_channels</span><span class="p">,</span> <span class="n">kernel_sizes</span><span class="p">)):</span>
  136. <span class="k">if</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="mi">3</span><span class="p">:</span>
  137. <span class="n">middle_layer</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">channels</span><span class="p">,</span> <span class="n">output_size</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
  138. <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
  139. <span class="k">else</span><span class="p">:</span>
  140. <span class="n">middle_layer</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">channels</span><span class="p">,</span> <span class="n">output_size</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
  141. <span class="n">layer</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
  142. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">input_size</span><span class="p">,</span> <span class="n">channels</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
  143. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">channels</span><span class="p">),</span>
  144. <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
  145. <span class="n">middle_layer</span><span class="p">,</span>
  146. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">output_size</span><span class="p">),</span>
  147. <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
  148. <span class="p">)</span>
  149. <span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">layer</span><span class="p">)</span>
  150. <span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span><span class="p">)</span>
  151. <span class="k">def</span> <span class="nf">_init_weights</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  152. <span class="n">layers</span> <span class="o">=</span> <span class="p">[</span><span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span><span class="p">,</span> <span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">loc</span><span class="p">,</span> <span class="o">*</span><span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="p">]</span>
  153. <span class="k">for</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">layers</span><span class="p">:</span>
  154. <span class="k">for</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">layer</span><span class="o">.</span><span class="n">parameters</span><span class="p">():</span>
  155. <span class="k">if</span> <span class="n">param</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
  156. <span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">xavier_uniform_</span><span class="p">(</span><span class="n">param</span><span class="p">)</span>
  157. <div class="viewcode-block" id="SSD.bbox_view"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.ssd.SSD.bbox_view">[docs]</a> <span class="k">def</span> <span class="nf">bbox_view</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">src</span><span class="p">,</span> <span class="n">loc</span><span class="p">,</span> <span class="n">conf</span><span class="p">):</span>
  158. <span class="sd">&quot;&quot;&quot; Shape the classifier to the view of bboxes &quot;&quot;&quot;</span>
  159. <span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
  160. <span class="k">for</span> <span class="n">s</span><span class="p">,</span> <span class="n">l</span><span class="p">,</span> <span class="n">c</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">src</span><span class="p">,</span> <span class="n">loc</span><span class="p">,</span> <span class="n">conf</span><span class="p">):</span>
  161. <span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">l</span><span class="p">(</span><span class="n">s</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="mi">4</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">),</span> <span class="n">c</span><span class="p">(</span><span class="n">s</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)))</span>
  162. <span class="n">locs</span><span class="p">,</span> <span class="n">confs</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="o">*</span><span class="n">ret</span><span class="p">))</span>
  163. <span class="n">locs</span><span class="p">,</span> <span class="n">confs</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span><span class="n">locs</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">(),</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span><span class="n">confs</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
  164. <span class="k">return</span> <span class="n">locs</span><span class="p">,</span> <span class="n">confs</span></div>
  165. <div class="viewcode-block" id="SSD.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.ssd.SSD.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
  166. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">backbone</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  167. <span class="c1"># IF THE BACKBONE IS A MultiOutputModule WE GET A LIST, OTHERWISE WE WRAP IT IN A LIST</span>
  168. <span class="n">detection_feed</span> <span class="o">=</span> <span class="n">x</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="nb">list</span><span class="p">)</span> <span class="k">else</span> <span class="p">[</span><span class="n">x</span><span class="p">]</span>
  169. <span class="n">x</span> <span class="o">=</span> <span class="n">detection_feed</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
  170. <span class="k">for</span> <span class="n">block</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span><span class="p">:</span>
  171. <span class="n">x</span> <span class="o">=</span> <span class="n">block</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  172. <span class="n">detection_feed</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  173. <span class="c1"># FEATURE MAPS: i.e. FOR 300X300 INPUT - 38X38X4, 19X19X6, 10X10X6, 5X5X6, 3X3X4, 1X1X4</span>
  174. <span class="n">locs</span><span class="p">,</span> <span class="n">confs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bbox_view</span><span class="p">(</span><span class="n">detection_feed</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">loc</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="p">)</span>
  175. <span class="c1"># FOR 300X300 INPUT - RETURN N_BATCH X 8732 X {N_LABELS, N_LOCS} RESULTS</span>
  176. <span class="k">return</span> <span class="n">locs</span><span class="p">,</span> <span class="n">confs</span></div></div>
  177. <div class="viewcode-block" id="SSDMobileNetV1"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.ssd.SSDMobileNetV1">[docs]</a><span class="k">class</span> <span class="nc">SSDMobileNetV1</span><span class="p">(</span><span class="n">SSD</span><span class="p">):</span>
  178. <span class="sd">&quot;&quot;&quot;</span>
  179. <span class="sd"> paper: http://ceur-ws.org/Vol-2500/paper_5.pdf</span>
  180. <span class="sd"> &quot;&quot;&quot;</span>
  181. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">:</span> <span class="n">HpmStruct</span><span class="p">):</span>
  182. <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span> <span class="o">=</span> <span class="n">HpmStruct</span><span class="p">(</span><span class="o">**</span><span class="n">DEFAULT_SSD_MOBILENET_V1_ARCH_PARAMS</span><span class="p">)</span>
  183. <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="o">**</span><span class="n">arch_params</span><span class="o">.</span><span class="n">to_dict</span><span class="p">())</span>
  184. <span class="n">mobilenet_backbone</span> <span class="o">=</span> <span class="n">MobileNet</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">up_to_layer</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
  185. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">backbone</span><span class="o">=</span><span class="n">mobilenet_backbone</span><span class="p">,</span> <span class="n">arch_params</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="p">)</span></div>
  186. <div class="viewcode-block" id="SSDLiteMobileNetV2"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.ssd.SSDLiteMobileNetV2">[docs]</a><span class="k">class</span> <span class="nc">SSDLiteMobileNetV2</span><span class="p">(</span><span class="n">SSD</span><span class="p">):</span>
  187. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">:</span> <span class="n">HpmStruct</span><span class="p">):</span>
  188. <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span> <span class="o">=</span> <span class="n">HpmStruct</span><span class="p">(</span><span class="o">**</span><span class="n">DEFAULT_SSD_LITE_MOBILENET_V2_ARCH_PARAMS</span><span class="p">)</span>
  189. <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">override</span><span class="p">(</span><span class="o">**</span><span class="n">arch_params</span><span class="o">.</span><span class="n">to_dict</span><span class="p">())</span>
  190. <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">width_mult</span><span class="p">))</span>
  191. <span class="n">mobilenetv2</span> <span class="o">=</span> <span class="n">MobileNetV2</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">width_mult</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">width_mult</span><span class="p">)</span>
  192. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">backbone</span><span class="o">=</span><span class="n">mobilenetv2</span><span class="o">.</span><span class="n">features</span><span class="p">,</span> <span class="n">arch_params</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="p">)</span>
  193. <span class="c1"># OVERRIDE THE DEFAULT FUNCTION FROM SSD. ADD THE SDD BLOCKS AFTER THE BACKBONE.</span>
  194. <span class="k">def</span> <span class="nf">_build_additional_blocks</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  195. <span class="n">channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">out_channels</span>
  196. <span class="n">expand_ratios</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">arch_params</span><span class="o">.</span><span class="n">expand_ratios</span>
  197. <span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span> <span class="o">=</span> <span class="p">[]</span>
  198. <span class="k">for</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">expand_ratio</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">channels</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">channels</span><span class="p">[</span><span class="mi">2</span><span class="p">:],</span> <span class="n">expand_ratios</span><span class="p">):</span>
  199. <span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span>
  200. <span class="n">InvertedResidual</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">expand_ratio</span><span class="o">=</span><span class="n">expand_ratio</span><span class="p">))</span>
  201. <span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">additional_blocks</span><span class="p">)</span></div>
  202. </pre></div>
  203. </div>
  204. </div>
  205. <footer>
  206. <hr/>
  207. <div role="contentinfo">
  208. <p>&#169; Copyright 2021, SuperGradients team.</p>
  209. </div>
  210. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  211. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  212. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  213. </footer>
  214. </div>
  215. </div>
  216. </section>
  217. </div>
  218. <script>
  219. jQuery(function () {
  220. SphinxRtdTheme.Navigation.enable(true);
  221. });
  222. </script>
  223. </body>
  224. </html>
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...