Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

shufflenetv2.html 47 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.models.shufflenetv2 &mdash; SuperGradients 1.0 documentation</title>
  7. <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
  9. <!--[if lt IE 9]>
  10. <script src="../../../../_static/js/html5shiv.min.js"></script>
  11. <![endif]-->
  12. <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
  13. <script src="../../../../_static/jquery.js"></script>
  14. <script src="../../../../_static/underscore.js"></script>
  15. <script src="../../../../_static/doctools.js"></script>
  16. <script src="../../../../_static/js/theme.js"></script>
  17. <link rel="index" title="Index" href="../../../../genindex.html" />
  18. <link rel="search" title="Search" href="../../../../search.html" />
  19. </head>
  20. <body class="wy-body-for-nav">
  21. <div class="wy-grid-for-nav">
  22. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  23. <div class="wy-side-scroll">
  24. <div class="wy-side-nav-search" >
  25. <a href="../../../../index.html" class="icon icon-home"> SuperGradients
  26. </a>
  27. <div role="search">
  28. <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
  29. <input type="text" name="q" placeholder="Search docs" />
  30. <input type="hidden" name="check_keywords" value="yes" />
  31. <input type="hidden" name="area" value="default" />
  32. </form>
  33. </div>
  34. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  35. <p class="caption"><span class="caption-text">Contents:</span></p>
  36. <ul>
  37. <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html">Introduction</a></li>
  38. <li class="toctree-l1"><a class="reference internal" href="../../../../intro.html#installation">Installation</a></li>
  39. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">super_gradients.training package</a></li>
  40. </ul>
  41. </div>
  42. </div>
  43. </nav>
  44. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  45. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  46. <a href="../../../../index.html">SuperGradients</a>
  47. </nav>
  48. <div class="wy-nav-content">
  49. <div class="rst-content">
  50. <div role="navigation" aria-label="Page navigation">
  51. <ul class="wy-breadcrumbs">
  52. <li><a href="../../../../index.html" class="icon icon-home"></a> &raquo;</li>
  53. <li><a href="../../../index.html">Module code</a> &raquo;</li>
  54. <li>super_gradients.training.models.shufflenetv2</li>
  55. <li class="wy-breadcrumbs-aside">
  56. </li>
  57. </ul>
  58. <hr/>
  59. </div>
  60. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  61. <div itemprop="articleBody">
  62. <h1>Source code for super_gradients.training.models.shufflenetv2</h1><div class="highlight"><pre>
  63. <span></span><span class="sd">&quot;&quot;&quot;</span>
  64. <span class="sd">ShuffleNetV2 in PyTorch.</span>
  65. <span class="sd">See the paper &quot;ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design&quot; for more details.</span>
  66. <span class="sd">(https://arxiv.org/abs/1807.11164)</span>
  67. <span class="sd">Code taken from torchvision/models/shufflenetv2.py</span>
  68. <span class="sd">&quot;&quot;&quot;</span>
  69. <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span>
  70. <span class="kn">import</span> <span class="nn">torch</span>
  71. <span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">Tensor</span>
  72. <span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
  73. <span class="kn">from</span> <span class="nn">super_gradients.training.utils</span> <span class="kn">import</span> <span class="n">HpmStruct</span>
  74. <span class="kn">from</span> <span class="nn">super_gradients.training.models.sg_module</span> <span class="kn">import</span> <span class="n">SgModule</span>
  75. <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
  76. <span class="s1">&#39;ShuffleNetV2Base&#39;</span><span class="p">,</span> <span class="s1">&#39;ShufflenetV2_x0_5&#39;</span><span class="p">,</span> <span class="s1">&#39;ShufflenetV2_x1_0&#39;</span><span class="p">,</span>
  77. <span class="s1">&#39;ShufflenetV2_x1_5&#39;</span><span class="p">,</span> <span class="s1">&#39;ShufflenetV2_x2_0&#39;</span><span class="p">,</span> <span class="s1">&#39;CustomizedShuffleNetV2&#39;</span>
  78. <span class="p">]</span>
  79. <span class="k">class</span> <span class="nc">ChannelShuffleInvertedResidual</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
  80. <span class="sd">&quot;&quot;&quot;</span>
  81. <span class="sd"> Implement Inverted Residual block as in [https://arxiv.org/abs/1807.11164] in Fig.3 (c) &amp; (d):</span>
  82. <span class="sd"> * When stride &gt; 1</span>
  83. <span class="sd"> - the whole input goes through branch1,</span>
  84. <span class="sd"> - the whole input goes through branch2 ,</span>
  85. <span class="sd"> and the arbitrary number of output channels are produced.</span>
  86. <span class="sd"> * When stride == 1</span>
  87. <span class="sd"> - half of input channels in are passed as identity,</span>
  88. <span class="sd"> - another half of input channels goes through branch2,</span>
  89. <span class="sd"> and the number of output channels after the block remains the same as in input.</span>
  90. <span class="sd"> Channel shuffle is performed on a concatenation in both cases.</span>
  91. <span class="sd"> &quot;&quot;&quot;</span>
  92. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inp</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">out</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">stride</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
  93. <span class="nb">super</span><span class="p">(</span><span class="n">ChannelShuffleInvertedResidual</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
  94. <span class="k">assert</span> <span class="mi">1</span> <span class="o">&lt;=</span> <span class="n">stride</span> <span class="o">&lt;=</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;Illegal stride value&quot;</span>
  95. <span class="k">assert</span> <span class="p">(</span><span class="n">stride</span> <span class="o">!=</span> <span class="mi">1</span><span class="p">)</span> <span class="ow">or</span> <span class="p">(</span><span class="n">inp</span> <span class="o">==</span> <span class="n">out</span><span class="p">),</span> \
  96. <span class="s2">&quot;When stride == 1 num of input channels should be equal to the requested num of out output channels&quot;</span>
  97. <span class="bp">self</span><span class="o">.</span><span class="n">stride</span> <span class="o">=</span> <span class="n">stride</span>
  98. <span class="c1"># half of requested out channels will be produced by each branch</span>
  99. <span class="n">branch_features</span> <span class="o">=</span> <span class="n">out</span> <span class="o">//</span> <span class="mi">2</span>
  100. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">stride</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
  101. <span class="bp">self</span><span class="o">.</span><span class="n">branch1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
  102. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inp</span><span class="p">,</span> <span class="n">inp</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">inp</span><span class="p">),</span>
  103. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">inp</span><span class="p">),</span>
  104. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inp</span><span class="p">,</span> <span class="n">branch_features</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
  105. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">branch_features</span><span class="p">),</span>
  106. <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
  107. <span class="p">)</span>
  108. <span class="k">else</span><span class="p">:</span>
  109. <span class="c1"># won&#39;t be called if self.stride == 1</span>
  110. <span class="bp">self</span><span class="o">.</span><span class="n">branch1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Identity</span><span class="p">()</span>
  111. <span class="bp">self</span><span class="o">.</span><span class="n">branch2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
  112. <span class="c1"># branch 2 operates on the whole input when stride &gt; 1 and on half of it otherwise</span>
  113. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inp</span> <span class="k">if</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">stride</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">)</span> <span class="k">else</span> <span class="n">inp</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">branch_features</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
  114. <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
  115. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">branch_features</span><span class="p">),</span>
  116. <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
  117. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">branch_features</span><span class="p">,</span> <span class="n">branch_features</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
  118. <span class="n">groups</span><span class="o">=</span><span class="n">branch_features</span><span class="p">),</span>
  119. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">branch_features</span><span class="p">),</span>
  120. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">branch_features</span><span class="p">,</span> <span class="n">branch_features</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
  121. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">branch_features</span><span class="p">),</span>
  122. <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  123. <span class="p">)</span>
  124. <span class="nd">@staticmethod</span>
  125. <span class="k">def</span> <span class="nf">channel_shuffle</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">groups</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
  126. <span class="sd">&quot;&quot;&quot;</span>
  127. <span class="sd"> From &quot;ShuffleNet V2: Practical Guidelines for EfficientCNN Architecture Design&quot; (https://arxiv.org/abs/1807.11164):</span>
  128. <span class="sd"> A “channel shuffle” operation is then introduced to enable</span>
  129. <span class="sd"> information communication between different groups of channels and improve accuracy.</span>
  130. <span class="sd"> The operation preserves x.size(), but shuffles its channels in the manner explained further in the example.</span>
  131. <span class="sd"> Example:</span>
  132. <span class="sd"> If group = 2 (2 branches with the same # of activation maps were concatenated before channel_shuffle),</span>
  133. <span class="sd"> then activation maps in x are:</span>
  134. <span class="sd"> from_B1, from_B1, ... from_B2, from_B2</span>
  135. <span class="sd"> After channel_shuffle activation maps in x will be:</span>
  136. <span class="sd"> from_B1, from_B2, ... from_B1, from_B2</span>
  137. <span class="sd"> &quot;&quot;&quot;</span>
  138. <span class="n">batch_size</span><span class="p">,</span> <span class="n">num_channels</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
  139. <span class="n">channels_per_group</span> <span class="o">=</span> <span class="n">num_channels</span> <span class="o">//</span> <span class="n">groups</span>
  140. <span class="c1"># reshape</span>
  141. <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span> <span class="n">channels_per_group</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">)</span>
  142. <span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
  143. <span class="c1"># flatten</span>
  144. <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">)</span>
  145. <span class="k">return</span> <span class="n">x</span>
  146. <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
  147. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">stride</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
  148. <span class="c1"># num channels remains the same due to assert that inp == out in __init__</span>
  149. <span class="n">x1</span><span class="p">,</span> <span class="n">x2</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
  150. <span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">x1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch2</span><span class="p">(</span><span class="n">x2</span><span class="p">)),</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
  151. <span class="k">else</span><span class="p">:</span>
  152. <span class="c1"># inp num channels can change to a requested arbitrary out num channels</span>
  153. <span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">branch1</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch2</span><span class="p">(</span><span class="n">x</span><span class="p">)),</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
  154. <span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">channel_shuffle</span><span class="p">(</span><span class="n">out</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
  155. <span class="k">return</span> <span class="n">out</span>
  156. <div class="viewcode-block" id="ShuffleNetV2Base"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.shufflenetv2.ShuffleNetV2Base">[docs]</a><span class="k">class</span> <span class="nc">ShuffleNetV2Base</span><span class="p">(</span><span class="n">SgModule</span><span class="p">):</span>
  157. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">structure</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">stages_out_channels</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span>
  158. <span class="n">backbone_mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span>
  159. <span class="n">block</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Module</span> <span class="o">=</span> <span class="n">ChannelShuffleInvertedResidual</span><span class="p">):</span>
  160. <span class="nb">super</span><span class="p">(</span><span class="n">ShuffleNetV2Base</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
  161. <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span> <span class="o">=</span> <span class="n">backbone_mode</span>
  162. <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">structure</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">3</span><span class="p">:</span>
  163. <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;expected structure as list of 3 positive ints&#39;</span><span class="p">)</span>
  164. <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">stages_out_channels</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">5</span><span class="p">:</span>
  165. <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;expected stages_out_channels as list of 5 positive ints&#39;</span><span class="p">)</span>
  166. <span class="bp">self</span><span class="o">.</span><span class="n">structure</span> <span class="o">=</span> <span class="n">structure</span>
  167. <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span> <span class="o">=</span> <span class="n">stages_out_channels</span>
  168. <span class="n">input_channels</span> <span class="o">=</span> <span class="mi">3</span>
  169. <span class="n">output_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
  170. <span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
  171. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">input_channels</span><span class="p">,</span> <span class="n">output_channels</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
  172. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">output_channels</span><span class="p">),</span>
  173. <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
  174. <span class="p">)</span>
  175. <span class="n">input_channels</span> <span class="o">=</span> <span class="n">output_channels</span>
  176. <span class="bp">self</span><span class="o">.</span><span class="n">maxpool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
  177. <span class="c1"># Static annotations for mypy</span>
  178. <span class="bp">self</span><span class="o">.</span><span class="n">layer2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="n">input_channels</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">structure</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
  179. <span class="bp">self</span><span class="o">.</span><span class="n">layer3</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">structure</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
  180. <span class="bp">self</span><span class="o">.</span><span class="n">layer4</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">structure</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
  181. <span class="n">input_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span>
  182. <span class="n">output_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
  183. <span class="bp">self</span><span class="o">.</span><span class="n">conv5</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
  184. <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">input_channels</span><span class="p">,</span> <span class="n">output_channels</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
  185. <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">output_channels</span><span class="p">),</span>
  186. <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
  187. <span class="p">)</span>
  188. <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span><span class="p">:</span>
  189. <span class="bp">self</span><span class="o">.</span><span class="n">avgpool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
  190. <span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">output_channels</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span>
  191. <span class="nd">@staticmethod</span>
  192. <span class="k">def</span> <span class="nf">_make_layer</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="n">input_channels</span><span class="p">,</span> <span class="n">output_channels</span><span class="p">,</span> <span class="n">repeats</span><span class="p">):</span>
  193. <span class="c1"># add first block with stride 2 to downsize the input</span>
  194. <span class="n">seq</span> <span class="o">=</span> <span class="p">[</span><span class="n">block</span><span class="p">(</span><span class="n">input_channels</span><span class="p">,</span> <span class="n">output_channels</span><span class="p">,</span> <span class="mi">2</span><span class="p">)]</span>
  195. <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">repeats</span> <span class="o">-</span> <span class="mi">1</span><span class="p">):</span>
  196. <span class="n">seq</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">block</span><span class="p">(</span><span class="n">output_channels</span><span class="p">,</span> <span class="n">output_channels</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
  197. <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">seq</span><span class="p">)</span>
  198. <div class="viewcode-block" id="ShuffleNetV2Base.load_state_dict"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.shufflenetv2.ShuffleNetV2Base.load_state_dict">[docs]</a> <span class="k">def</span> <span class="nf">load_state_dict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state_dict</span><span class="p">,</span> <span class="n">strict</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
  199. <span class="sd">&quot;&quot;&quot;</span>
  200. <span class="sd"> load_state_dict - Overloads the base method and calls it to load a modified dict for usage as a backbone</span>
  201. <span class="sd"> :param state_dict: The state_dict to load</span>
  202. <span class="sd"> :param strict: strict loading (see super() docs)</span>
  203. <span class="sd"> &quot;&quot;&quot;</span>
  204. <span class="n">pretrained_model_weights_dict</span> <span class="o">=</span> <span class="n">state_dict</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
  205. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span><span class="p">:</span>
  206. <span class="c1"># removing fc weights first not to break strict loading</span>
  207. <span class="n">fc_weights_keys</span> <span class="o">=</span> <span class="p">[</span><span class="n">k</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">pretrained_model_weights_dict</span> <span class="k">if</span> <span class="s1">&#39;fc&#39;</span> <span class="ow">in</span> <span class="n">k</span><span class="p">]</span>
  208. <span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">fc_weights_keys</span><span class="p">:</span>
  209. <span class="n">pretrained_model_weights_dict</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
  210. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">pretrained_model_weights_dict</span><span class="p">,</span> <span class="n">strict</span><span class="p">)</span></div>
  211. <div class="viewcode-block" id="ShuffleNetV2Base.forward"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.shufflenetv2.ShuffleNetV2Base.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
  212. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  213. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">maxpool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  214. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  215. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  216. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer4</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  217. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv5</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  218. <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">backbone_mode</span><span class="p">:</span>
  219. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">avgpool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  220. <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
  221. <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
  222. <span class="k">return</span> <span class="n">x</span></div></div>
  223. <div class="viewcode-block" id="ShufflenetV2_x0_5"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.shufflenetv2.ShufflenetV2_x0_5">[docs]</a><span class="k">class</span> <span class="nc">ShufflenetV2_x0_5</span><span class="p">(</span><span class="n">ShuffleNetV2Base</span><span class="p">):</span>
  224. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">:</span> <span class="n">HpmStruct</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
  225. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">([</span><span class="mi">4</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">24</span><span class="p">,</span> <span class="mi">48</span><span class="p">,</span> <span class="mi">96</span><span class="p">,</span> <span class="mi">192</span><span class="p">,</span> <span class="mi">1024</span><span class="p">],</span>
  226. <span class="n">backbone_mode</span><span class="o">=</span><span class="n">backbone_mode</span><span class="p">,</span>
  227. <span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span> <span class="ow">or</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">)</span></div>
  228. <div class="viewcode-block" id="ShufflenetV2_x1_0"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.shufflenetv2.ShufflenetV2_x1_0">[docs]</a><span class="k">class</span> <span class="nc">ShufflenetV2_x1_0</span><span class="p">(</span><span class="n">ShuffleNetV2Base</span><span class="p">):</span>
  229. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">:</span> <span class="n">HpmStruct</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
  230. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">([</span><span class="mi">4</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">24</span><span class="p">,</span> <span class="mi">116</span><span class="p">,</span> <span class="mi">232</span><span class="p">,</span> <span class="mi">464</span><span class="p">,</span> <span class="mi">1024</span><span class="p">],</span>
  231. <span class="n">backbone_mode</span><span class="o">=</span><span class="n">backbone_mode</span><span class="p">,</span>
  232. <span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span> <span class="ow">or</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">)</span></div>
  233. <div class="viewcode-block" id="ShufflenetV2_x1_5"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.shufflenetv2.ShufflenetV2_x1_5">[docs]</a><span class="k">class</span> <span class="nc">ShufflenetV2_x1_5</span><span class="p">(</span><span class="n">ShuffleNetV2Base</span><span class="p">):</span>
  234. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">:</span> <span class="n">HpmStruct</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
  235. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">([</span><span class="mi">4</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">24</span><span class="p">,</span> <span class="mi">176</span><span class="p">,</span> <span class="mi">352</span><span class="p">,</span> <span class="mi">704</span><span class="p">,</span> <span class="mi">1024</span><span class="p">],</span>
  236. <span class="n">backbone_mode</span><span class="o">=</span><span class="n">backbone_mode</span><span class="p">,</span>
  237. <span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span> <span class="ow">or</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">)</span></div>
  238. <div class="viewcode-block" id="ShufflenetV2_x2_0"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.shufflenetv2.ShufflenetV2_x2_0">[docs]</a><span class="k">class</span> <span class="nc">ShufflenetV2_x2_0</span><span class="p">(</span><span class="n">ShuffleNetV2Base</span><span class="p">):</span>
  239. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">:</span> <span class="n">HpmStruct</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
  240. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">([</span><span class="mi">4</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">24</span><span class="p">,</span> <span class="mi">244</span><span class="p">,</span> <span class="mi">488</span><span class="p">,</span> <span class="mi">976</span><span class="p">,</span> <span class="mi">2048</span><span class="p">],</span>
  241. <span class="n">backbone_mode</span><span class="o">=</span><span class="n">backbone_mode</span><span class="p">,</span>
  242. <span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span> <span class="ow">or</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">)</span></div>
  243. <div class="viewcode-block" id="CustomizedShuffleNetV2"><a class="viewcode-back" href="../../../../super_gradients.training.models.html#super_gradients.training.models.shufflenetv2.CustomizedShuffleNetV2">[docs]</a><span class="k">class</span> <span class="nc">CustomizedShuffleNetV2</span><span class="p">(</span><span class="n">ShuffleNetV2Base</span><span class="p">):</span>
  244. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">:</span> <span class="n">HpmStruct</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span> <span class="n">backbone_mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
  245. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">arch_params</span><span class="o">.</span><span class="n">structure</span><span class="p">,</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">stages_out_channels</span><span class="p">,</span>
  246. <span class="n">backbone_mode</span><span class="o">=</span><span class="n">backbone_mode</span><span class="p">,</span>
  247. <span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span> <span class="ow">or</span> <span class="n">arch_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">)</span></div>
  248. </pre></div>
  249. </div>
  250. </div>
  251. <footer>
  252. <hr/>
  253. <div role="contentinfo">
  254. <p>&#169; Copyright 2021, SuperGradients team.</p>
  255. </div>
  256. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  257. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  258. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  259. </footer>
  260. </div>
  261. </div>
  262. </section>
  263. </div>
  264. <script>
  265. jQuery(function () {
  266. SphinxRtdTheme.Navigation.enable(true);
  267. });
  268. </script>
  269. </body>
  270. </html>
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...