1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
- import unittest
- from super_gradients.training import SgModel
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.datasets import ClassificationTestDatasetInterface
- from super_gradients.training.models import LeNet
- from super_gradients.training.utils.callbacks import Phase, PhaseCallback, PhaseContext
- class ContextMethodsCheckerCallback(PhaseCallback):
- """
- Callback for checking that at a certain phase specific SgModel methods are accessible.
- """
- def __init__(self, phase: Phase, accessible_method_names: list, non_accessible_method_names: list):
- super(ContextMethodsCheckerCallback, self).__init__(phase)
- self.accessible_method_names = accessible_method_names
- self.non_accessible_method_names = non_accessible_method_names
- self.result = True
- def __call__(self, context: PhaseContext):
- for accessible_method_name in self.accessible_method_names:
- if not hasattr(context.context_methods, accessible_method_name):
- self.result = False
- for non_accessible_method_name in self.non_accessible_method_names:
- if hasattr(context.context_methods, non_accessible_method_name):
- self.result = False
- class ContextMethodsTest(unittest.TestCase):
- def setUp(self) -> None:
- self.dataset_params = {"batch_size": 4}
- self.dataset = ClassificationTestDatasetInterface(dataset_params=self.dataset_params)
- self.arch_params = {'num_classes': 10}
- def test_access_to_methods_by_phase(self):
- net = LeNet()
- model = SgModel("test_access_to_methods_by_phase", model_checkpoints_location='local')
- model.connect_dataset_interface(self.dataset)
- model.build_model(net, arch_params=self.arch_params)
- phase_callbacks = []
- for phase in Phase:
- if phase in [Phase.PRE_TRAINING, Phase.TRAIN_EPOCH_START, Phase.TRAIN_EPOCH_END, Phase.VALIDATION_EPOCH_END,
- Phase.VALIDATION_END_BEST_EPOCH, Phase.POST_TRAINING]:
- phase_callbacks.append(ContextMethodsCheckerCallback(phase=phase, accessible_method_names=["get_net",
- "set_net",
- "set_ckpt_best_name",
- "reset_best_metric",
- "build_model",
- "validate_epoch"],
- non_accessible_method_names=[]))
- else:
- phase_callbacks.append(
- ContextMethodsCheckerCallback(phase=phase, non_accessible_method_names=["get_net",
- "set_net",
- "set_ckpt_best_name",
- "reset_best_metric",
- "build_model",
- "validate_epoch",
- "set_ema"],
- accessible_method_names=[]))
- train_params = {"max_epochs": 1, "lr_updates": [], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks}
- model.train(train_params)
- for phase_callback in phase_callbacks:
- if isinstance(phase_callback, ContextMethodsCheckerCallback):
- self.assertTrue(phase_callback.result)
- if __name__ == '__main__':
- unittest.main()
|