Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

phase_delegates_test.py 4.6 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  1. import unittest
  2. from super_gradients.training import SgModel
  3. from super_gradients.training.metrics import Accuracy
  4. from super_gradients.training.datasets import ClassificationTestDatasetInterface
  5. from super_gradients.training.models import LeNet
  6. from super_gradients.training.utils.callbacks import Phase, PhaseCallback, PhaseContext
  7. class ContextMethodsCheckerCallback(PhaseCallback):
  8. """
  9. Callback for checking that at a certain phase specific SgModel methods are accessible.
  10. """
  11. def __init__(self, phase: Phase, accessible_method_names: list, non_accessible_method_names: list):
  12. super(ContextMethodsCheckerCallback, self).__init__(phase)
  13. self.accessible_method_names = accessible_method_names
  14. self.non_accessible_method_names = non_accessible_method_names
  15. self.result = True
  16. def __call__(self, context: PhaseContext):
  17. for accessible_method_name in self.accessible_method_names:
  18. if not hasattr(context.context_methods, accessible_method_name):
  19. self.result = False
  20. for non_accessible_method_name in self.non_accessible_method_names:
  21. if hasattr(context.context_methods, non_accessible_method_name):
  22. self.result = False
  23. class ContextMethodsTest(unittest.TestCase):
  24. def setUp(self) -> None:
  25. self.dataset_params = {"batch_size": 4}
  26. self.dataset = ClassificationTestDatasetInterface(dataset_params=self.dataset_params)
  27. self.arch_params = {'num_classes': 10}
  28. def test_access_to_methods_by_phase(self):
  29. net = LeNet()
  30. model = SgModel("test_access_to_methods_by_phase", model_checkpoints_location='local')
  31. model.connect_dataset_interface(self.dataset)
  32. model.build_model(net, arch_params=self.arch_params)
  33. phase_callbacks = []
  34. for phase in Phase:
  35. if phase in [Phase.PRE_TRAINING, Phase.TRAIN_EPOCH_START, Phase.TRAIN_EPOCH_END, Phase.VALIDATION_EPOCH_END,
  36. Phase.VALIDATION_END_BEST_EPOCH, Phase.POST_TRAINING]:
  37. phase_callbacks.append(ContextMethodsCheckerCallback(phase=phase, accessible_method_names=["get_net",
  38. "set_net",
  39. "set_ckpt_best_name",
  40. "reset_best_metric",
  41. "build_model",
  42. "validate_epoch"],
  43. non_accessible_method_names=[]))
  44. else:
  45. phase_callbacks.append(
  46. ContextMethodsCheckerCallback(phase=phase, non_accessible_method_names=["get_net",
  47. "set_net",
  48. "set_ckpt_best_name",
  49. "reset_best_metric",
  50. "build_model",
  51. "validate_epoch",
  52. "set_ema"],
  53. accessible_method_names=[]))
  54. train_params = {"max_epochs": 1, "lr_updates": [], "lr_decay_factor": 0.1, "lr_mode": "step",
  55. "lr_warmup_epochs": 0, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
  56. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  57. "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
  58. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  59. "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks}
  60. model.train(train_params)
  61. for phase_callback in phase_callbacks:
  62. if isinstance(phase_callback, ContextMethodsCheckerCallback):
  63. self.assertTrue(phase_callback.result)
  64. if __name__ == '__main__':
  65. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...