Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

phase_context_test.py 4.5 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
  1. import unittest
  2. from super_gradients.training.utils.callbacks import PhaseContextTestCallback, Phase
  3. from super_gradients import SgModel, \
  4. ClassificationTestDatasetInterface
  5. from super_gradients.training.metrics import Accuracy, Top5
  6. from super_gradients.training.models import ResNet18
  7. import torch
  8. from super_gradients.training.utils.utils import AverageMeter
  9. from torchmetrics import MetricCollection
  10. class PhaseContextTest(unittest.TestCase):
  11. def context_information_in_train_test(self):
  12. model = SgModel("context_information_in_train_test", model_checkpoints_location='local')
  13. dataset_params = {"batch_size": 10}
  14. dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
  15. model.connect_dataset_interface(dataset)
  16. net = ResNet18(num_classes=5, arch_params={})
  17. model.build_model(net)
  18. phase_callbacks = [PhaseContextTestCallback(Phase.TRAIN_BATCH_END),
  19. PhaseContextTestCallback(Phase.TRAIN_BATCH_STEP),
  20. PhaseContextTestCallback(Phase.TRAIN_EPOCH_END),
  21. PhaseContextTestCallback(Phase.VALIDATION_BATCH_END),
  22. PhaseContextTestCallback(Phase.VALIDATION_EPOCH_END)]
  23. train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  24. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
  25. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  26. "train_metrics_list": [Accuracy()], "valid_metrics_list": [Top5()],
  27. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Top5",
  28. "greater_metric_to_watch_is_better": True, "phase_callbacks": phase_callbacks}
  29. model.train(train_params)
  30. context_callbacks = list(filter(lambda cb: isinstance(cb, PhaseContextTestCallback), model.phase_callbacks))
  31. # CHECK THAT PHASE CONTEXES HAVE THE EXACT INFORMATION THERY'RE SUPPOSE TO HOLD
  32. for phase_callback in context_callbacks:
  33. if phase_callback.phase in [Phase.TRAIN_BATCH_END, Phase.TRAIN_BATCH_STEP, Phase.VALIDATION_BATCH_END]:
  34. self.assertTrue(phase_callback.context.batch_idx == 0)
  35. self.assertTrue(phase_callback.context.criterion is not None)
  36. self.assertTrue(isinstance(phase_callback.context.inputs, torch.Tensor))
  37. self.assertTrue(isinstance(phase_callback.context.loss_avg_meter, AverageMeter))
  38. self.assertTrue(isinstance(phase_callback.context.loss_log_items, torch.Tensor))
  39. self.assertTrue(phase_callback.context.metrics_dict is None)
  40. self.assertTrue(isinstance(phase_callback.context.preds, torch.Tensor))
  41. self.assertTrue(isinstance(phase_callback.context.target, torch.Tensor))
  42. if phase_callback.phase == Phase.VALIDATION_BATCH_END:
  43. self.assertTrue(phase_callback.context.epoch == 2)
  44. self.assertTrue(isinstance(phase_callback.context.metrics_compute_fn, MetricCollection) and hasattr(phase_callback.context.metrics_compute_fn, "Top5"))
  45. else:
  46. self.assertTrue(phase_callback.context.epoch == 1)
  47. self.assertTrue(isinstance(phase_callback.context.metrics_compute_fn, MetricCollection) and hasattr(phase_callback.context.metrics_compute_fn, "Accuracy"))
  48. if phase_callback.phase in [Phase.TRAIN_EPOCH_END, Phase.VALIDATION_EPOCH_END]:
  49. self.assertTrue(phase_callback.context.batch_idx is None)
  50. self.assertTrue(phase_callback.context.criterion is None)
  51. self.assertTrue(phase_callback.context.inputs is None)
  52. self.assertTrue(phase_callback.context.loss_log_items is None)
  53. self.assertTrue(phase_callback.context.metrics_compute_fn is None)
  54. self.assertTrue(phase_callback.context.optimizer is not None)
  55. self.assertTrue(phase_callback.context.preds is None)
  56. self.assertTrue(phase_callback.context.target is None)
  57. self.assertTrue(phase_callback.context.epoch == 1)
  58. # EPOCH END PHASES USE THE SAME CONTEXT, WHICH IS UPDATED- SO VALID METRICS DICT SHOULD BE PRESENT
  59. self.assertTrue(isinstance(phase_callback.context.metrics_dict, dict) and "Loss" in phase_callback.context.metrics_dict.keys() and "Top5" in phase_callback.context.metrics_dict.keys())
  60. if __name__ == '__main__':
  61. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...