1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
- import unittest
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.utils.callbacks import PhaseContextTestCallback, Phase
- from super_gradients import Trainer
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.models import ResNet18
- import torch
- from super_gradients.training.utils.utils import AverageMeter
- from torchmetrics import MetricCollection
- class PhaseContextTest(unittest.TestCase):
- def context_information_in_train_test(self):
- trainer = Trainer("context_information_in_train_test")
- net = ResNet18(num_classes=5, arch_params={})
- phase_callbacks = [PhaseContextTestCallback(Phase.TRAIN_BATCH_END),
- PhaseContextTestCallback(Phase.TRAIN_BATCH_STEP),
- PhaseContextTestCallback(Phase.TRAIN_EPOCH_END),
- PhaseContextTestCallback(Phase.VALIDATION_BATCH_END),
- PhaseContextTestCallback(Phase.VALIDATION_EPOCH_END)]
- train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Top5()],
- "metric_to_watch": "Top5",
- "greater_metric_to_watch_is_better": True, "phase_callbacks": phase_callbacks}
- trainer.train(model=net, training_params=train_params,
- train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader())
- context_callbacks = list(filter(lambda cb: isinstance(cb, PhaseContextTestCallback), trainer.phase_callbacks))
- # CHECK THAT PHASE CONTEXES HAVE THE EXACT INFORMATION THERY'RE SUPPOSE TO HOLD
- for phase_callback in context_callbacks:
- if phase_callback.phase in [Phase.TRAIN_BATCH_END, Phase.TRAIN_BATCH_STEP, Phase.VALIDATION_BATCH_END]:
- self.assertTrue(phase_callback.context.batch_idx == 0)
- self.assertTrue(phase_callback.context.criterion is not None)
- self.assertTrue(isinstance(phase_callback.context.inputs, torch.Tensor))
- self.assertTrue(isinstance(phase_callback.context.loss_avg_meter, AverageMeter))
- self.assertTrue(isinstance(phase_callback.context.loss_log_items, torch.Tensor))
- self.assertTrue(phase_callback.context.metrics_dict is None)
- self.assertTrue(isinstance(phase_callback.context.preds, torch.Tensor))
- self.assertTrue(isinstance(phase_callback.context.target, torch.Tensor))
- if phase_callback.phase == Phase.VALIDATION_BATCH_END:
- self.assertTrue(phase_callback.context.epoch == 2)
- self.assertTrue(isinstance(phase_callback.context.metrics_compute_fn, MetricCollection) and
- hasattr(phase_callback.context.metrics_compute_fn, "Top5"))
- else:
- self.assertTrue(phase_callback.context.epoch == 1)
- self.assertTrue(isinstance(phase_callback.context.metrics_compute_fn, MetricCollection) and
- hasattr(phase_callback.context.metrics_compute_fn, "Accuracy"))
- if phase_callback.phase in [Phase.TRAIN_EPOCH_END, Phase.VALIDATION_EPOCH_END]:
- self.assertTrue(phase_callback.context.batch_idx is None)
- self.assertTrue(phase_callback.context.criterion is None)
- self.assertTrue(phase_callback.context.inputs is None)
- self.assertTrue(phase_callback.context.loss_log_items is None)
- self.assertTrue(phase_callback.context.metrics_compute_fn is None)
- self.assertTrue(phase_callback.context.optimizer is not None)
- self.assertTrue(phase_callback.context.preds is None)
- self.assertTrue(phase_callback.context.target is None)
- self.assertTrue(phase_callback.context.epoch == 1)
- # EPOCH END PHASES USE THE SAME CONTEXT, WHICH IS UPDATED- SO VALID METRICS DICT SHOULD BE PRESENT
- self.assertTrue(isinstance(phase_callback.context.metrics_dict, dict))
- self.assertTrue("Loss" in phase_callback.context.metrics_dict.keys())
- self.assertTrue("Top5" in phase_callback.context.metrics_dict.keys())
- if __name__ == '__main__':
- unittest.main()
|