Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

optimizer_params_override_test.py 2.8 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  1. import unittest
  2. from super_gradients.training.utils.utils import get_param
  3. from super_gradients import Trainer
  4. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  5. from super_gradients.training.metrics import Accuracy, Top5
  6. from super_gradients.training.models import ResNet18
  7. class TrainOptimizerParamsOverride(unittest.TestCase):
  8. def test_optimizer_params_partial_override(self):
  9. trainer = Trainer("test_optimizer_params_partial_override")
  10. net = ResNet18(num_classes=5, arch_params={})
  11. train_params = {
  12. "max_epochs": 1,
  13. "lr_updates": [1],
  14. "lr_decay_factor": 0.1,
  15. "lr_mode": "step",
  16. "lr_warmup_epochs": 0,
  17. "initial_lr": 0.1,
  18. "loss": "cross_entropy",
  19. "optimizer": "SGD",
  20. "criterion_params": {},
  21. "optimizer_params": {"momentum": 0.9},
  22. "zero_weight_decay_on_bias_and_bn": True,
  23. "train_metrics_list": [Accuracy(), Top5()],
  24. "valid_metrics_list": [Accuracy(), Top5()],
  25. "metric_to_watch": "Accuracy",
  26. "greater_metric_to_watch_is_better": True,
  27. }
  28. trainer.train(
  29. model=net,
  30. training_params=train_params,
  31. train_loader=classification_test_dataloader(batch_size=10),
  32. valid_loader=classification_test_dataloader(batch_size=10),
  33. )
  34. self.assertTrue(get_param(trainer.training_params.optimizer_params, "weight_decay"), 1e-4)
  35. self.assertTrue(get_param(trainer.training_params.optimizer_params, "momentum"), 0.9)
  36. def test_optimizer_params_full_override(self):
  37. trainer = Trainer("test_optimizer_params_full_override")
  38. net = ResNet18(num_classes=5, arch_params={})
  39. train_params = {
  40. "max_epochs": 1,
  41. "lr_updates": [1],
  42. "lr_decay_factor": 0.1,
  43. "lr_mode": "step",
  44. "lr_warmup_epochs": 0,
  45. "initial_lr": 0.1,
  46. "loss": "cross_entropy",
  47. "optimizer": "SGD",
  48. "criterion_params": {},
  49. "zero_weight_decay_on_bias_and_bn": True,
  50. "train_metrics_list": [Accuracy(), Top5()],
  51. "valid_metrics_list": [Accuracy(), Top5()],
  52. "metric_to_watch": "Accuracy",
  53. "greater_metric_to_watch_is_better": True,
  54. }
  55. trainer.train(
  56. model=net,
  57. training_params=train_params,
  58. train_loader=classification_test_dataloader(batch_size=10),
  59. valid_loader=classification_test_dataloader(batch_size=10),
  60. )
  61. self.assertTrue(get_param(trainer.training_params.optimizer_params, "weight_decay"), 1e-4)
  62. self.assertTrue(get_param(trainer.training_params.optimizer_params, "momentum"), 0.9)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...