1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.datasets.mixup — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">SuperGradients</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.datasets.mixup</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.datasets.mixup</h1><div class="highlight"><pre>
- <span></span><span class="sd">""" Mixup and Cutmix</span>
- <span class="sd">Papers:</span>
- <span class="sd">mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412)</span>
- <span class="sd">CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899)</span>
- <span class="sd">Code Reference:</span>
- <span class="sd">CutMix: https://github.com/clovaai/CutMix-PyTorch</span>
- <span class="sd">CutMix by timm: https://github.com/rwightman/pytorch-image-models/timm</span>
- <span class="sd">"""</span>
- <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Union</span>
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.exceptions.dataset_exceptions</span> <span class="kn">import</span> <span class="n">IllegalDatasetParameterException</span>
- <div class="viewcode-block" id="one_hot"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.mixup.one_hot">[docs]</a><span class="k">def</span> <span class="nf">one_hot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">on_value</span><span class="o">=</span><span class="mf">1.</span><span class="p">,</span> <span class="n">off_value</span><span class="o">=</span><span class="mf">0.</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">'cuda'</span><span class="p">):</span>
- <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">long</span><span class="p">()</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">full</span><span class="p">((</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">num_classes</span><span class="p">),</span> <span class="n">off_value</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span><span class="o">.</span><span class="n">scatter_</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">on_value</span><span class="p">)</span></div>
- <div class="viewcode-block" id="mixup_target"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.mixup.mixup_target">[docs]</a><span class="k">def</span> <span class="nf">mixup_target</span><span class="p">(</span><span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">lam</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.</span><span class="p">,</span> <span class="n">smoothing</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span> <span class="n">device</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">'cuda'</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> generate a smooth target (label) two-hot tensor to support the mixed images with different labels</span>
- <span class="sd"> :param target: the targets tensor</span>
- <span class="sd"> :param num_classes: number of classes (to set the final tensor size)</span>
- <span class="sd"> :param lam: percentage of label a range [0, 1] in the mixing</span>
- <span class="sd"> :param smoothing: the smoothing multiplier</span>
- <span class="sd"> :param device: usable device ['cuda', 'cpu']</span>
- <span class="sd"> :return:</span>
- <span class="sd"> """</span>
- <span class="n">off_value</span> <span class="o">=</span> <span class="n">smoothing</span> <span class="o">/</span> <span class="n">num_classes</span>
- <span class="n">on_value</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">-</span> <span class="n">smoothing</span> <span class="o">+</span> <span class="n">off_value</span>
- <span class="n">y1</span> <span class="o">=</span> <span class="n">one_hot</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">on_value</span><span class="o">=</span><span class="n">on_value</span><span class="p">,</span> <span class="n">off_value</span><span class="o">=</span><span class="n">off_value</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
- <span class="n">y2</span> <span class="o">=</span> <span class="n">one_hot</span><span class="p">(</span><span class="n">target</span><span class="o">.</span><span class="n">flip</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">on_value</span><span class="o">=</span><span class="n">on_value</span><span class="p">,</span> <span class="n">off_value</span><span class="o">=</span><span class="n">off_value</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">y1</span> <span class="o">*</span> <span class="n">lam</span> <span class="o">+</span> <span class="n">y2</span> <span class="o">*</span> <span class="p">(</span><span class="mf">1.</span> <span class="o">-</span> <span class="n">lam</span><span class="p">)</span></div>
- <div class="viewcode-block" id="rand_bbox"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.mixup.rand_bbox">[docs]</a><span class="k">def</span> <span class="nf">rand_bbox</span><span class="p">(</span><span class="n">img_shape</span><span class="p">:</span> <span class="nb">tuple</span><span class="p">,</span> <span class="n">lam</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">margin</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.</span><span class="p">,</span> <span class="n">count</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
- <span class="sd">""" Standard CutMix bounding-box</span>
- <span class="sd"> Generates a random square bbox based on lambda value. This impl includes</span>
- <span class="sd"> support for enforcing a border margin as percent of bbox dimensions.</span>
- <span class="sd"> :param img_shape: Image shape as tuple</span>
- <span class="sd"> :param lam: Cutmix lambda value</span>
- <span class="sd"> :param margin: Percentage of bbox dimension to enforce as margin (reduce amount of box outside image)</span>
- <span class="sd"> :param count: Number of bbox to generate</span>
- <span class="sd"> """</span>
- <span class="n">ratio</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">lam</span><span class="p">)</span>
- <span class="n">img_h</span><span class="p">,</span> <span class="n">img_w</span> <span class="o">=</span> <span class="n">img_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">:]</span>
- <span class="n">cut_h</span><span class="p">,</span> <span class="n">cut_w</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">img_h</span> <span class="o">*</span> <span class="n">ratio</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">img_w</span> <span class="o">*</span> <span class="n">ratio</span><span class="p">)</span>
- <span class="n">margin_y</span><span class="p">,</span> <span class="n">margin_x</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">margin</span> <span class="o">*</span> <span class="n">cut_h</span><span class="p">),</span> <span class="nb">int</span><span class="p">(</span><span class="n">margin</span> <span class="o">*</span> <span class="n">cut_w</span><span class="p">)</span>
- <span class="n">cy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span> <span class="o">+</span> <span class="n">margin_y</span><span class="p">,</span> <span class="n">img_h</span> <span class="o">-</span> <span class="n">margin_y</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">count</span><span class="p">)</span>
- <span class="n">cx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span> <span class="o">+</span> <span class="n">margin_x</span><span class="p">,</span> <span class="n">img_w</span> <span class="o">-</span> <span class="n">margin_x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">count</span><span class="p">)</span>
- <span class="n">yl</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">clip</span><span class="p">(</span><span class="n">cy</span> <span class="o">-</span> <span class="n">cut_h</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">img_h</span><span class="p">)</span>
- <span class="n">yh</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">clip</span><span class="p">(</span><span class="n">cy</span> <span class="o">+</span> <span class="n">cut_h</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">img_h</span><span class="p">)</span>
- <span class="n">xl</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">clip</span><span class="p">(</span><span class="n">cx</span> <span class="o">-</span> <span class="n">cut_w</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">img_w</span><span class="p">)</span>
- <span class="n">xh</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">clip</span><span class="p">(</span><span class="n">cx</span> <span class="o">+</span> <span class="n">cut_w</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">img_w</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">yl</span><span class="p">,</span> <span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">,</span> <span class="n">xh</span></div>
- <div class="viewcode-block" id="rand_bbox_minmax"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.mixup.rand_bbox_minmax">[docs]</a><span class="k">def</span> <span class="nf">rand_bbox_minmax</span><span class="p">(</span><span class="n">img_shape</span><span class="p">:</span> <span class="nb">tuple</span><span class="p">,</span> <span class="n">minmax</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">],</span> <span class="n">count</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
- <span class="sd">""" Min-Max CutMix bounding-box</span>
- <span class="sd"> Inspired by Darknet cutmix impl, generates a random rectangular bbox</span>
- <span class="sd"> based on min/max percent values applied to each dimension of the input image.</span>
- <span class="sd"> Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max.</span>
- <span class="sd"> :param img_shape: Image shape as tuple</span>
- <span class="sd"> :param minmax: Min and max bbox ratios (as percent of image size)</span>
- <span class="sd"> :param count: Number of bbox to generate</span>
- <span class="sd"> """</span>
- <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">minmax</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span>
- <span class="n">img_h</span><span class="p">,</span> <span class="n">img_w</span> <span class="o">=</span> <span class="n">img_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">:]</span>
- <span class="n">cut_h</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">img_h</span> <span class="o">*</span> <span class="n">minmax</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="nb">int</span><span class="p">(</span><span class="n">img_h</span> <span class="o">*</span> <span class="n">minmax</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="n">size</span><span class="o">=</span><span class="n">count</span><span class="p">)</span>
- <span class="n">cut_w</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="n">img_w</span> <span class="o">*</span> <span class="n">minmax</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="nb">int</span><span class="p">(</span><span class="n">img_w</span> <span class="o">*</span> <span class="n">minmax</span><span class="p">[</span><span class="mi">1</span><span class="p">]),</span> <span class="n">size</span><span class="o">=</span><span class="n">count</span><span class="p">)</span>
- <span class="n">yl</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">img_h</span> <span class="o">-</span> <span class="n">cut_h</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">count</span><span class="p">)</span>
- <span class="n">xl</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">img_w</span> <span class="o">-</span> <span class="n">cut_w</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">count</span><span class="p">)</span>
- <span class="n">yu</span> <span class="o">=</span> <span class="n">yl</span> <span class="o">+</span> <span class="n">cut_h</span>
- <span class="n">xu</span> <span class="o">=</span> <span class="n">xl</span> <span class="o">+</span> <span class="n">cut_w</span>
- <span class="k">return</span> <span class="n">yl</span><span class="p">,</span> <span class="n">yu</span><span class="p">,</span> <span class="n">xl</span><span class="p">,</span> <span class="n">xu</span></div>
- <div class="viewcode-block" id="cutmix_bbox_and_lam"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.mixup.cutmix_bbox_and_lam">[docs]</a><span class="k">def</span> <span class="nf">cutmix_bbox_and_lam</span><span class="p">(</span><span class="n">img_shape</span><span class="p">:</span> <span class="nb">tuple</span><span class="p">,</span> <span class="n">lam</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">ratio_minmax</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">correct_lam</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
- <span class="n">count</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Generate bbox and apply lambda correction.</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="n">ratio_minmax</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">yl</span><span class="p">,</span> <span class="n">yu</span><span class="p">,</span> <span class="n">xl</span><span class="p">,</span> <span class="n">xu</span> <span class="o">=</span> <span class="n">rand_bbox_minmax</span><span class="p">(</span><span class="n">img_shape</span><span class="p">,</span> <span class="n">ratio_minmax</span><span class="p">,</span> <span class="n">count</span><span class="o">=</span><span class="n">count</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">yl</span><span class="p">,</span> <span class="n">yu</span><span class="p">,</span> <span class="n">xl</span><span class="p">,</span> <span class="n">xu</span> <span class="o">=</span> <span class="n">rand_bbox</span><span class="p">(</span><span class="n">img_shape</span><span class="p">,</span> <span class="n">lam</span><span class="p">,</span> <span class="n">count</span><span class="o">=</span><span class="n">count</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">correct_lam</span> <span class="ow">or</span> <span class="n">ratio_minmax</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">bbox_area</span> <span class="o">=</span> <span class="p">(</span><span class="n">yu</span> <span class="o">-</span> <span class="n">yl</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">xu</span> <span class="o">-</span> <span class="n">xl</span><span class="p">)</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">-</span> <span class="n">bbox_area</span> <span class="o">/</span> <span class="nb">float</span><span class="p">(</span><span class="n">img_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="n">img_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
- <span class="k">return</span> <span class="p">(</span><span class="n">yl</span><span class="p">,</span> <span class="n">yu</span><span class="p">,</span> <span class="n">xl</span><span class="p">,</span> <span class="n">xu</span><span class="p">),</span> <span class="n">lam</span></div>
- <div class="viewcode-block" id="CollateMixup"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.mixup.CollateMixup">[docs]</a><span class="k">class</span> <span class="nc">CollateMixup</span><span class="p">:</span>
- <span class="sd">"""</span>
- <span class="sd"> Collate with Mixup/Cutmix that applies different params to each element or whole batch</span>
- <span class="sd"> A Mixup impl that's performed while collating the batches.</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">mixup_alpha</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.</span><span class="p">,</span> <span class="n">cutmix_alpha</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.</span><span class="p">,</span> <span class="n">cutmix_minmax</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
- <span class="n">prob</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">switch_prob</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">,</span>
- <span class="n">mode</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">'batch'</span><span class="p">,</span> <span class="n">correct_lam</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">label_smoothing</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Mixup/Cutmix that applies different params to each element or whole batch</span>
- <span class="sd"> :param mixup_alpha: mixup alpha value, mixup is active if > 0.</span>
- <span class="sd"> :param cutmix_alpha: cutmix alpha value, cutmix is active if > 0.</span>
- <span class="sd"> :param cutmix_minmax: cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None.</span>
- <span class="sd"> :param prob: probability of applying mixup or cutmix per batch or element</span>
- <span class="sd"> :param switch_prob: probability of switching to cutmix instead of mixup when both are active</span>
- <span class="sd"> :param mode: how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element)</span>
- <span class="sd"> :param correct_lam: apply lambda correction when cutmix bbox clipped by image borders</span>
- <span class="sd"> :param label_smoothing: apply label smoothing to the mixed target tensor</span>
- <span class="sd"> :param num_classes: number of classes for target</span>
- <span class="sd"> """</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span> <span class="o">=</span> <span class="n">mixup_alpha</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span> <span class="o">=</span> <span class="n">cutmix_alpha</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_minmax</span> <span class="o">=</span> <span class="n">cutmix_minmax</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_minmax</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cutmix_minmax</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span>
- <span class="c1"># force cutmix alpha == 1.0 when minmax active to keep logic simple & safe</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span> <span class="o">=</span> <span class="mf">1.0</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">mix_prob</span> <span class="o">=</span> <span class="n">prob</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">switch_prob</span> <span class="o">=</span> <span class="n">switch_prob</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">label_smoothing</span> <span class="o">=</span> <span class="n">label_smoothing</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span> <span class="o">=</span> <span class="n">num_classes</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">mode</span> <span class="o">=</span> <span class="n">mode</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">correct_lam</span> <span class="o">=</span> <span class="n">correct_lam</span> <span class="c1"># correct lambda based on clipped area for cutmix</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">mixup_enabled</span> <span class="o">=</span> <span class="kc">True</span> <span class="c1"># set to false to disable mixing (intended tp be set by train loop)</span>
- <span class="k">def</span> <span class="nf">_params_per_elem</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> generate two random masks to define which elements of the batch will be mixed and how (depending on the</span>
- <span class="sd"> self.mixup_enabled, self.mixup_alpha, self.cutmix_alpha parameters</span>
- <span class="sd"> :param batch_size:</span>
- <span class="sd"> :return: two tensors with shape=batch_size - the first contains the lambda value per batch element</span>
- <span class="sd"> and the second is a binary flag indicating use of cutmix per batch element</span>
- <span class="sd"> """</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
- <span class="n">use_cutmix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">bool</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_enabled</span><span class="p">:</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span> <span class="o">></span> <span class="mf">0.</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span> <span class="o">></span> <span class="mf">0.</span><span class="p">:</span>
- <span class="n">use_cutmix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">switch_prob</span>
- <span class="n">lam_mix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">where</span><span class="p">(</span>
- <span class="n">use_cutmix</span><span class="p">,</span>
- <span class="n">torch</span><span class="o">.</span><span class="n">distributions</span><span class="o">.</span><span class="n">beta</span><span class="o">.</span><span class="n">Beta</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span><span class="p">)</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="n">sample_shape</span><span class="o">=</span><span class="n">batch_size</span><span class="p">),</span>
- <span class="n">torch</span><span class="o">.</span><span class="n">distributions</span><span class="o">.</span><span class="n">beta</span><span class="o">.</span><span class="n">Beta</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span><span class="p">)</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="n">sample_shape</span><span class="o">=</span><span class="n">batch_size</span><span class="p">))</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span> <span class="o">></span> <span class="mf">0.</span><span class="p">:</span>
- <span class="n">lam_mix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">distributions</span><span class="o">.</span><span class="n">beta</span><span class="o">.</span><span class="n">Beta</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span><span class="p">)</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="n">sample_shape</span><span class="o">=</span><span class="n">batch_size</span><span class="p">)</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span> <span class="o">></span> <span class="mf">0.</span><span class="p">:</span>
- <span class="n">use_cutmix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">bool</span><span class="p">)</span>
- <span class="n">lam_mix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">distributions</span><span class="o">.</span><span class="n">beta</span><span class="o">.</span><span class="n">Beta</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span><span class="p">)</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="n">sample_shape</span><span class="o">=</span><span class="n">batch_size</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">raise</span> <span class="n">IllegalDatasetParameterException</span><span class="p">(</span><span class="s2">"One of mixup_alpha > 0., cutmix_alpha > 0., "</span>
- <span class="s2">"cutmix_minmax not None should be true."</span><span class="p">)</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">mix_prob</span><span class="p">,</span> <span class="n">lam_mix</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">),</span> <span class="n">lam</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">lam</span><span class="p">,</span> <span class="n">use_cutmix</span>
- <span class="k">def</span> <span class="nf">_params_per_batch</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> generate two random parameters to define if batch will be mixed and how (depending on the</span>
- <span class="sd"> self.mixup_enabled, self.mixup_alpha, self.cutmix_alpha parameters</span>
- <span class="sd"> :return: two parameters - the first contains the lambda value for the whole batch</span>
- <span class="sd"> and the second is a binary flag indicating use of cutmix for the batch</span>
- <span class="sd"> """</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="mf">1.</span>
- <span class="n">use_cutmix</span> <span class="o">=</span> <span class="kc">False</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_enabled</span> <span class="ow">and</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">mix_prob</span><span class="p">:</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span> <span class="o">></span> <span class="mf">0.</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span> <span class="o">></span> <span class="mf">0.</span><span class="p">:</span>
- <span class="n">use_cutmix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o"><</span> <span class="bp">self</span><span class="o">.</span><span class="n">switch_prob</span>
- <span class="n">lam_mix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">distributions</span><span class="o">.</span><span class="n">beta</span><span class="o">.</span><span class="n">Beta</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span><span class="p">)</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span> <span class="k">if</span> <span class="n">use_cutmix</span> <span class="k">else</span> \
- <span class="n">torch</span><span class="o">.</span><span class="n">distributions</span><span class="o">.</span><span class="n">beta</span><span class="o">.</span><span class="n">Beta</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span><span class="p">)</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span> <span class="o">></span> <span class="mf">0.</span><span class="p">:</span>
- <span class="n">lam_mix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">distributions</span><span class="o">.</span><span class="n">beta</span><span class="o">.</span><span class="n">Beta</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixup_alpha</span><span class="p">)</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span> <span class="o">></span> <span class="mf">0.</span><span class="p">:</span>
- <span class="n">use_cutmix</span> <span class="o">=</span> <span class="kc">True</span>
- <span class="n">lam_mix</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">distributions</span><span class="o">.</span><span class="n">beta</span><span class="o">.</span><span class="n">Beta</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cutmix_alpha</span><span class="p">)</span><span class="o">.</span><span class="n">sample</span><span class="p">()</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">raise</span> <span class="n">IllegalDatasetParameterException</span><span class="p">(</span><span class="s2">"One of mixup_alpha > 0., cutmix_alpha > 0., "</span>
- <span class="s2">"cutmix_minmax not None should be true."</span><span class="p">)</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="n">lam_mix</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">lam</span><span class="p">,</span> <span class="n">use_cutmix</span>
- <span class="k">def</span> <span class="nf">_mix_elem_collate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">output</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="nb">list</span><span class="p">,</span> <span class="n">half</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> This is the implementation for 'elem' or 'half' modes</span>
- <span class="sd"> :param output: the output tensor to fill</span>
- <span class="sd"> :param batch: list of thr batch items</span>
- <span class="sd"> :return: a tensor containing the lambda values used for the mixing (this vector can be used for</span>
- <span class="sd"> mixing the labels as well)</span>
- <span class="sd"> """</span>
- <span class="n">batch_size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span>
- <span class="n">num_elem</span> <span class="o">=</span> <span class="n">batch_size</span> <span class="o">//</span> <span class="mi">2</span> <span class="k">if</span> <span class="n">half</span> <span class="k">else</span> <span class="n">batch_size</span>
- <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">output</span><span class="p">)</span> <span class="o">==</span> <span class="n">num_elem</span>
- <span class="n">lam_batch</span><span class="p">,</span> <span class="n">use_cutmix</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_params_per_elem</span><span class="p">(</span><span class="n">num_elem</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_elem</span><span class="p">):</span>
- <span class="n">j</span> <span class="o">=</span> <span class="n">batch_size</span> <span class="o">-</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="n">lam_batch</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
- <span class="n">mixed</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
- <span class="k">if</span> <span class="n">lam</span> <span class="o">!=</span> <span class="mf">1.</span><span class="p">:</span>
- <span class="k">if</span> <span class="n">use_cutmix</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="n">half</span><span class="p">:</span>
- <span class="n">mixed</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">clone</span><span class="p">(</span><span class="n">mixed</span><span class="p">)</span>
- <span class="p">(</span><span class="n">yl</span><span class="p">,</span> <span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">,</span> <span class="n">xh</span><span class="p">),</span> <span class="n">lam</span> <span class="o">=</span> <span class="n">cutmix_bbox_and_lam</span><span class="p">(</span>
- <span class="n">output</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">lam</span><span class="p">,</span> <span class="n">ratio_minmax</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cutmix_minmax</span><span class="p">,</span> <span class="n">correct_lam</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">correct_lam</span><span class="p">)</span>
- <span class="n">mixed</span><span class="p">[:,</span> <span class="n">yl</span><span class="p">:</span><span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">:</span><span class="n">xh</span><span class="p">]</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="n">j</span><span class="p">][</span><span class="mi">0</span><span class="p">][:,</span> <span class="n">yl</span><span class="p">:</span><span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">:</span><span class="n">xh</span><span class="p">]</span>
- <span class="n">lam_batch</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">lam</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">mixed</span> <span class="o">=</span> <span class="n">mixed</span> <span class="o">*</span> <span class="n">lam</span> <span class="o">+</span> <span class="n">batch</span><span class="p">[</span><span class="n">j</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">lam</span><span class="p">)</span>
- <span class="n">output</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="n">mixed</span>
- <span class="k">if</span> <span class="n">half</span><span class="p">:</span>
- <span class="n">lam_batch</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">lam_batch</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">num_elem</span><span class="p">)))</span>
- <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">lam_batch</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_mix_pair_collate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">output</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="nb">list</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> This is the implementation for 'pair' mode</span>
- <span class="sd"> :param output: the output tensor to fill</span>
- <span class="sd"> :param batch: list of thr batch items</span>
- <span class="sd"> :return: a tensor containing the lambda values used for the mixing (this vector can be used for</span>
- <span class="sd"> mixing the labels as well)</span>
- <span class="sd"> """</span>
- <span class="n">batch_size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span>
- <span class="n">lam_batch</span><span class="p">,</span> <span class="n">use_cutmix</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_params_per_elem</span><span class="p">(</span><span class="n">batch_size</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">batch_size</span> <span class="o">//</span> <span class="mi">2</span><span class="p">):</span>
- <span class="n">j</span> <span class="o">=</span> <span class="n">batch_size</span> <span class="o">-</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="n">lam_batch</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
- <span class="n">mixed_i</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
- <span class="n">mixed_j</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="n">j</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
- <span class="k">assert</span> <span class="mi">0</span> <span class="o"><=</span> <span class="n">lam</span> <span class="o"><=</span> <span class="mf">1.0</span>
- <span class="k">if</span> <span class="n">lam</span> <span class="o"><</span> <span class="mf">1.</span><span class="p">:</span>
- <span class="k">if</span> <span class="n">use_cutmix</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
- <span class="p">(</span><span class="n">yl</span><span class="p">,</span> <span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">,</span> <span class="n">xh</span><span class="p">),</span> <span class="n">lam</span> <span class="o">=</span> <span class="n">cutmix_bbox_and_lam</span><span class="p">(</span>
- <span class="n">output</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">lam</span><span class="p">,</span> <span class="n">ratio_minmax</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cutmix_minmax</span><span class="p">,</span> <span class="n">correct_lam</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">correct_lam</span><span class="p">)</span>
- <span class="n">patch_i</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">clone</span><span class="p">(</span><span class="n">mixed_i</span><span class="p">[:,</span> <span class="n">yl</span><span class="p">:</span><span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">:</span><span class="n">xh</span><span class="p">])</span>
- <span class="n">mixed_i</span><span class="p">[:,</span> <span class="n">yl</span><span class="p">:</span><span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">:</span><span class="n">xh</span><span class="p">]</span> <span class="o">=</span> <span class="n">mixed_j</span><span class="p">[:,</span> <span class="n">yl</span><span class="p">:</span><span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">:</span><span class="n">xh</span><span class="p">]</span>
- <span class="n">mixed_j</span><span class="p">[:,</span> <span class="n">yl</span><span class="p">:</span><span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">:</span><span class="n">xh</span><span class="p">]</span> <span class="o">=</span> <span class="n">patch_i</span>
- <span class="n">lam_batch</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">lam</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">mixed_temp</span> <span class="o">=</span> <span class="n">mixed_i</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span> <span class="o">*</span> <span class="n">lam</span> <span class="o">+</span> <span class="n">mixed_j</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">lam</span><span class="p">)</span>
- <span class="n">mixed_j</span> <span class="o">=</span> <span class="n">mixed_j</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span> <span class="o">*</span> <span class="n">lam</span> <span class="o">+</span> <span class="n">mixed_i</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">lam</span><span class="p">)</span>
- <span class="n">mixed_i</span> <span class="o">=</span> <span class="n">mixed_temp</span>
- <span class="n">torch</span><span class="o">.</span><span class="n">rint</span><span class="p">(</span><span class="n">mixed_j</span><span class="p">,</span> <span class="n">out</span><span class="o">=</span><span class="n">mixed_j</span><span class="p">)</span>
- <span class="n">torch</span><span class="o">.</span><span class="n">rint</span><span class="p">(</span><span class="n">mixed_i</span><span class="p">,</span> <span class="n">out</span><span class="o">=</span><span class="n">mixed_i</span><span class="p">)</span>
- <span class="n">output</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="n">mixed_i</span>
- <span class="n">output</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">+=</span> <span class="n">mixed_j</span>
- <span class="n">lam_batch</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">lam_batch</span><span class="p">,</span> <span class="n">lam_batch</span><span class="p">[::</span><span class="o">-</span><span class="mi">1</span><span class="p">]))</span>
- <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">lam_batch</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_mix_batch_collate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">output</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="nb">list</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> This is the implementation for 'batch' mode</span>
- <span class="sd"> :param output: the output tensor to fill</span>
- <span class="sd"> :param batch: list of thr batch items</span>
- <span class="sd"> :return: the lambda value used for the mixing</span>
- <span class="sd"> """</span>
- <span class="n">batch_size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span>
- <span class="n">lam</span><span class="p">,</span> <span class="n">use_cutmix</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_params_per_batch</span><span class="p">()</span>
- <span class="k">if</span> <span class="n">use_cutmix</span><span class="p">:</span>
- <span class="p">(</span><span class="n">yl</span><span class="p">,</span> <span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">,</span> <span class="n">xh</span><span class="p">),</span> <span class="n">lam</span> <span class="o">=</span> <span class="n">cutmix_bbox_and_lam</span><span class="p">(</span>
- <span class="n">output</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">lam</span><span class="p">,</span> <span class="n">ratio_minmax</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cutmix_minmax</span><span class="p">,</span> <span class="n">correct_lam</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">correct_lam</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">batch_size</span><span class="p">):</span>
- <span class="n">j</span> <span class="o">=</span> <span class="n">batch_size</span> <span class="o">-</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span>
- <span class="n">mixed</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
- <span class="k">if</span> <span class="n">lam</span> <span class="o">!=</span> <span class="mf">1.</span><span class="p">:</span>
- <span class="k">if</span> <span class="n">use_cutmix</span><span class="p">:</span>
- <span class="n">mixed</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">clone</span><span class="p">(</span><span class="n">mixed</span><span class="p">)</span> <span class="c1"># don't want to modify the original while iterating</span>
- <span class="n">mixed</span><span class="p">[:,</span> <span class="n">yl</span><span class="p">:</span><span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">:</span><span class="n">xh</span><span class="p">]</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="n">j</span><span class="p">][</span><span class="mi">0</span><span class="p">][:,</span> <span class="n">yl</span><span class="p">:</span><span class="n">yh</span><span class="p">,</span> <span class="n">xl</span><span class="p">:</span><span class="n">xh</span><span class="p">]</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">mixed</span> <span class="o">=</span> <span class="n">mixed</span> <span class="o">*</span> <span class="n">lam</span> <span class="o">+</span> <span class="n">batch</span><span class="p">[</span><span class="n">j</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">lam</span><span class="p">)</span>
- <span class="n">output</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="n">mixed</span>
- <span class="k">return</span> <span class="n">lam</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">,</span> <span class="n">_</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
- <span class="n">batch_size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">batch_size</span> <span class="o">%</span> <span class="mi">2</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">raise</span> <span class="n">IllegalDatasetParameterException</span><span class="p">(</span><span class="s1">'Batch size should be even when using this'</span><span class="p">)</span>
- <span class="n">half</span> <span class="o">=</span> <span class="s1">'half'</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span>
- <span class="k">if</span> <span class="n">half</span><span class="p">:</span>
- <span class="n">batch_size</span> <span class="o">//=</span> <span class="mi">2</span>
- <span class="n">output</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">*</span><span class="n">batch</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span> <span class="o">==</span> <span class="s1">'elem'</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span> <span class="o">==</span> <span class="s1">'half'</span><span class="p">:</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_mix_elem_collate</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">batch</span><span class="p">,</span> <span class="n">half</span><span class="o">=</span><span class="n">half</span><span class="p">)</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span> <span class="o">==</span> <span class="s1">'pair'</span><span class="p">:</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_mix_pair_collate</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">batch</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">lam</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_mix_batch_collate</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">batch</span><span class="p">)</span>
- <span class="n">target</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="n">b</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="k">for</span> <span class="n">b</span> <span class="ow">in</span> <span class="n">batch</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
- <span class="n">target</span> <span class="o">=</span> <span class="n">mixup_target</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">lam</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">label_smoothing</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">'cpu'</span><span class="p">)</span>
- <span class="n">target</span> <span class="o">=</span> <span class="n">target</span><span class="p">[:</span><span class="n">batch_size</span><span class="p">]</span>
- <span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="n">target</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|