1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.datasets.datasets_utils — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">SuperGradients</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.datasets.datasets_utils</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.datasets.datasets_utils</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">copy</span>
- <span class="kn">import</span> <span class="nn">os</span>
- <span class="kn">from</span> <span class="nn">abc</span> <span class="kn">import</span> <span class="n">ABC</span><span class="p">,</span> <span class="n">abstractmethod</span>
- <span class="kn">from</span> <span class="nn">multiprocessing</span> <span class="kn">import</span> <span class="n">Value</span><span class="p">,</span> <span class="n">Lock</span>
- <span class="kn">import</span> <span class="nn">random</span>
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
- <span class="kn">import</span> <span class="nn">torchvision</span>
- <span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span>
- <span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">from</span> <span class="nn">super_gradients.common.sg_loggers.abstract_sg_logger</span> <span class="kn">import</span> <span class="n">AbstractSGLogger</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.datasets.detection_datasets.detection_dataset</span> <span class="kn">import</span> <span class="n">DetectionDataSet</span>
- <span class="kn">from</span> <span class="nn">super_gradients.common.abstractions.abstract_logger</span> <span class="kn">import</span> <span class="n">get_logger</span>
- <span class="kn">from</span> <span class="nn">deprecated</span> <span class="kn">import</span> <span class="n">deprecated</span>
- <span class="kn">from</span> <span class="nn">matplotlib.patches</span> <span class="kn">import</span> <span class="n">Rectangle</span>
- <span class="kn">from</span> <span class="nn">torch.utils.tensorboard</span> <span class="kn">import</span> <span class="n">SummaryWriter</span>
- <span class="kn">from</span> <span class="nn">torchvision.datasets</span> <span class="kn">import</span> <span class="n">ImageFolder</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.datasets.auto_augment</span> <span class="kn">import</span> <span class="n">rand_augment_transform</span>
- <span class="kn">from</span> <span class="nn">torchvision.transforms</span> <span class="kn">import</span> <span class="n">transforms</span><span class="p">,</span> <span class="n">InterpolationMode</span><span class="p">,</span> <span class="n">RandomResizedCrop</span>
- <span class="kn">from</span> <span class="nn">tqdm</span> <span class="kn">import</span> <span class="n">tqdm</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.utils</span> <span class="kn">import</span> <span class="n">AverageMeter</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.detection_utils</span> <span class="kn">import</span> <span class="n">DetectionVisualization</span>
- <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
- <div class="viewcode-block" id="get_mean_and_std_torch"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.get_mean_and_std_torch">[docs]</a><span class="k">def</span> <span class="nf">get_mean_and_std_torch</span><span class="p">(</span><span class="n">data_dir</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">dataloader</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">RandomResizeSize</span><span class="o">=</span><span class="mi">224</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> A function for getting the mean and std of large datasets using pytorch dataloader and gpu functionality.</span>
- <span class="sd"> :param data_dir: String, path to none-library dataset folder. For example "/data/Imagenette" or "/data/TinyImagenet"</span>
- <span class="sd"> :param dataloader: a torch DataLoader, as it would feed the data into the trainer (including transforms etc).</span>
- <span class="sd"> :param RandomResizeSize: Int, the size of the RandomResizeCrop as it appears in the DataInterface (for example, for Imagenet,</span>
- <span class="sd"> this value should be 224).</span>
- <span class="sd"> :return: 2 lists,mean and std, each one of len 3 (1 for each channel)</span>
- <span class="sd"> """</span>
- <span class="k">assert</span> <span class="n">data_dir</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">dataloader</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s1">'Please provide either path to data folder or DataLoader, not both.'</span>
- <span class="k">if</span> <span class="n">dataloader</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">traindir</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">abspath</span><span class="p">(</span><span class="n">data_dir</span><span class="p">),</span> <span class="s1">'train'</span><span class="p">)</span>
- <span class="n">trainset</span> <span class="o">=</span> <span class="n">ImageFolder</span><span class="p">(</span><span class="n">traindir</span><span class="p">,</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span><span class="n">transforms</span><span class="o">.</span><span class="n">RandomResizedCrop</span><span class="p">(</span><span class="n">RandomResizeSize</span><span class="p">),</span>
- <span class="n">transforms</span><span class="o">.</span><span class="n">RandomHorizontalFlip</span><span class="p">(),</span>
- <span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">()]))</span>
- <span class="n">dataloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">trainset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="n">num_workers</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'Calculating on </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">dataloader</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span><span class="si">}</span><span class="s1"> Training Samples'</span><span class="p">)</span>
- <span class="n">device</span> <span class="o">=</span> <span class="s1">'cuda:0'</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s1">'cpu'</span>
- <span class="n">h</span><span class="p">,</span> <span class="n">w</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span>
- <span class="k">for</span> <span class="n">batch_idx</span><span class="p">,</span> <span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">dataloader</span><span class="p">):</span>
- <span class="n">inputs</span> <span class="o">=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">batch_idx</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
- <span class="n">h</span><span class="p">,</span> <span class="n">w</span> <span class="o">=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="n">inputs</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'Min: </span><span class="si">{</span><span class="n">inputs</span><span class="o">.</span><span class="n">min</span><span class="p">()</span><span class="si">}</span><span class="s1">, Max: </span><span class="si">{</span><span class="n">inputs</span><span class="o">.</span><span class="n">max</span><span class="p">()</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span>
- <span class="n">chsum</span> <span class="o">=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">keepdim</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">chsum</span> <span class="o">+=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">keepdim</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="n">mean</span> <span class="o">=</span> <span class="n">chsum</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">trainset</span><span class="p">)</span> <span class="o">/</span> <span class="n">h</span> <span class="o">/</span> <span class="n">w</span>
- <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'mean: </span><span class="si">{</span><span class="n">mean</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span>
- <span class="n">chsum</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="k">for</span> <span class="n">batch_idx</span><span class="p">,</span> <span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">dataloader</span><span class="p">):</span>
- <span class="n">inputs</span> <span class="o">=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">batch_idx</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
- <span class="n">chsum</span> <span class="o">=</span> <span class="p">(</span><span class="n">inputs</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">keepdim</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">chsum</span> <span class="o">+=</span> <span class="p">(</span><span class="n">inputs</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span><span class="o">.</span><span class="n">pow</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="n">keepdim</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="n">std</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">chsum</span> <span class="o">/</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">trainset</span><span class="p">)</span> <span class="o">*</span> <span class="n">h</span> <span class="o">*</span> <span class="n">w</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span>
- <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'std: </span><span class="si">{</span><span class="n">std</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">mean</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">tolist</span><span class="p">(),</span> <span class="n">std</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span></div>
- <div class="viewcode-block" id="get_mean_and_std"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.get_mean_and_std">[docs]</a><span class="nd">@deprecated</span><span class="p">(</span><span class="n">reason</span><span class="o">=</span><span class="s1">'Use get_mean_and_std_torch() instead. It is faster and more accurate'</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">get_mean_and_std</span><span class="p">(</span><span class="n">dataset</span><span class="p">):</span>
- <span class="sd">'''Compute the mean and std value of dataset.'''</span>
- <span class="n">dataloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
- <span class="n">mean</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
- <span class="n">std</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'==> Computing mean and std..'</span><span class="p">)</span>
- <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span>
- <span class="k">for</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">targets</span> <span class="ow">in</span> <span class="n">dataloader</span><span class="p">:</span>
- <span class="k">if</span> <span class="n">j</span> <span class="o">%</span> <span class="mi">10</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">j</span><span class="p">)</span>
- <span class="n">j</span> <span class="o">+=</span> <span class="mi">1</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span>
- <span class="n">mean</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="n">inputs</span><span class="p">[:,</span> <span class="n">i</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:]</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
- <span class="n">std</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+=</span> <span class="n">inputs</span><span class="p">[:,</span> <span class="n">i</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:]</span><span class="o">.</span><span class="n">std</span><span class="p">()</span>
- <span class="n">mean</span><span class="o">.</span><span class="n">div_</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">dataset</span><span class="p">))</span>
- <span class="n">std</span><span class="o">.</span><span class="n">div_</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">dataset</span><span class="p">))</span>
- <span class="k">return</span> <span class="n">mean</span><span class="p">,</span> <span class="n">std</span></div>
- <div class="viewcode-block" id="AbstractCollateFunction"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.AbstractCollateFunction">[docs]</a><span class="k">class</span> <span class="nc">AbstractCollateFunction</span><span class="p">(</span><span class="n">ABC</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> A collate function (for torch DataLoader)</span>
- <span class="sd"> """</span>
- <span class="nd">@abstractmethod</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">):</span>
- <span class="k">pass</span></div>
- <div class="viewcode-block" id="ComposedCollateFunction"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.ComposedCollateFunction">[docs]</a><span class="k">class</span> <span class="nc">ComposedCollateFunction</span><span class="p">(</span><span class="n">AbstractCollateFunction</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> A function (for torch DataLoader) which executes a sequence of sub collate functions</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">functions</span><span class="p">:</span> <span class="nb">list</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">functions</span> <span class="o">=</span> <span class="n">functions</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">):</span>
- <span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">functions</span><span class="p">:</span>
- <span class="n">batch</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">batch</span></div>
- <div class="viewcode-block" id="AtomicInteger"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.AtomicInteger">[docs]</a><span class="k">class</span> <span class="nc">AtomicInteger</span><span class="p">:</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_value</span> <span class="o">=</span> <span class="n">Value</span><span class="p">(</span><span class="s1">'i'</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span>
- <span class="k">def</span> <span class="fm">__set__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">instance</span><span class="p">,</span> <span class="n">value</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_value</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">value</span>
- <span class="k">def</span> <span class="fm">__get__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">instance</span><span class="p">,</span> <span class="n">owner</span><span class="p">):</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_value</span><span class="o">.</span><span class="n">value</span></div>
- <div class="viewcode-block" id="MultiScaleCollateFunction"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.MultiScaleCollateFunction">[docs]</a><span class="k">class</span> <span class="nc">MultiScaleCollateFunction</span><span class="p">(</span><span class="n">AbstractCollateFunction</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> a collate function to implement multi-scale data augmentation</span>
- <span class="sd"> according to https://arxiv.org/pdf/1612.08242.pdf</span>
- <span class="sd"> """</span>
- <span class="n">_counter</span> <span class="o">=</span> <span class="n">AtomicInteger</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
- <span class="n">_current_size</span> <span class="o">=</span> <span class="n">AtomicInteger</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
- <span class="n">_lock</span> <span class="o">=</span> <span class="n">Lock</span><span class="p">()</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">target_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">min_image_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">max_image_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
- <span class="n">image_size_steps</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span>
- <span class="n">change_frequency</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> set parameters for the multi-scale collate function</span>
- <span class="sd"> the possible image sizes are in range [min_image_size, max_image_size] in steps of image_size_steps</span>
- <span class="sd"> a new size will be randomly selected every change_frequency calls to the collate_fn()</span>
- <span class="sd"> :param target_size: scales will be [0.66 * target_size, 1.5 * target_size]</span>
- <span class="sd"> :param min_image_size: the minimum size to scale down to (in pixels)</span>
- <span class="sd"> :param max_image_size: the maximum size to scale up to (in pixels)</span>
- <span class="sd"> :param image_size_steps: typically, the stride of the net, which defines the possible image</span>
- <span class="sd"> size multiplications</span>
- <span class="sd"> :param change_frequency:</span>
- <span class="sd"> """</span>
- <span class="k">assert</span> <span class="n">target_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">or</span> <span class="p">(</span><span class="n">max_image_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">min_image_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">),</span> \
- <span class="s1">'either target_size or min_image_size and max_image_size has to be set'</span>
- <span class="k">assert</span> <span class="n">target_size</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">max_image_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s1">'target_size and max_image_size cannot be both defined'</span>
- <span class="k">if</span> <span class="n">target_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">min_image_size</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mf">0.66</span> <span class="o">*</span> <span class="n">target_size</span> <span class="o">-</span> <span class="p">((</span><span class="mf">0.66</span> <span class="o">*</span> <span class="n">target_size</span><span class="p">)</span> <span class="o">%</span> <span class="n">image_size_steps</span><span class="p">)</span> <span class="o">+</span> <span class="n">image_size_steps</span><span class="p">)</span>
- <span class="n">max_image_size</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mf">1.5</span> <span class="o">*</span> <span class="n">target_size</span> <span class="o">-</span> <span class="p">((</span><span class="mf">1.5</span> <span class="o">*</span> <span class="n">target_size</span><span class="p">)</span> <span class="o">%</span> <span class="n">image_size_steps</span><span class="p">))</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'Using multi-scale </span><span class="si">%g</span><span class="s1"> - </span><span class="si">%g</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="n">min_image_size</span><span class="p">,</span> <span class="n">max_image_size</span><span class="p">))</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sizes</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">min_image_size</span><span class="p">,</span> <span class="n">max_image_size</span> <span class="o">+</span> <span class="n">image_size_steps</span><span class="p">,</span> <span class="n">image_size_steps</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">image_size_steps</span> <span class="o">=</span> <span class="n">image_size_steps</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">frequency</span> <span class="o">=</span> <span class="n">change_frequency</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_current_size</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sizes</span><span class="p">)</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">):</span>
- <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">_lock</span><span class="p">:</span>
- <span class="c1"># Important: this implementation was tailored for a specific input. it assumes the batch is a tuple where</span>
- <span class="c1"># the images are the first item</span>
- <span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">batch</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">),</span> <span class="s1">'this collate function expects the input to be a tuple (images, labels)'</span>
- <span class="n">images</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_counter</span> <span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">frequency</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_current_size</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sizes</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_counter</span> <span class="o">+=</span> <span class="mi">1</span>
- <span class="k">assert</span> <span class="n">images</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_size_steps</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">images</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_size_steps</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> \
- <span class="s1">'images sized not divisible by </span><span class="si">%d</span><span class="s1">. (resize images before calling multi_scale)'</span> <span class="o">%</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_size_steps</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_current_size</span> <span class="o">!=</span> <span class="nb">max</span><span class="p">(</span><span class="n">images</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">:]):</span>
- <span class="n">ratio</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_current_size</span><span class="p">)</span> <span class="o">/</span> <span class="nb">max</span><span class="p">(</span><span class="n">images</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">:])</span>
- <span class="n">new_size</span> <span class="o">=</span> <span class="p">(</span><span class="nb">int</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">images</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="n">ratio</span><span class="p">)),</span> <span class="nb">int</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">images</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">ratio</span><span class="p">)))</span>
- <span class="n">images</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">interpolate</span><span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">new_size</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'bilinear'</span><span class="p">,</span> <span class="n">align_corners</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">images</span><span class="p">,</span> <span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span></div>
- <span class="n">_pil_interpolation_to_str</span> <span class="o">=</span> <span class="p">{</span>
- <span class="n">Image</span><span class="o">.</span><span class="n">NEAREST</span><span class="p">:</span> <span class="s1">'PIL.Image.NEAREST'</span><span class="p">,</span>
- <span class="n">Image</span><span class="o">.</span><span class="n">BILINEAR</span><span class="p">:</span> <span class="s1">'PIL.Image.BILINEAR'</span><span class="p">,</span>
- <span class="n">Image</span><span class="o">.</span><span class="n">BICUBIC</span><span class="p">:</span> <span class="s1">'PIL.Image.BICUBIC'</span><span class="p">,</span>
- <span class="n">Image</span><span class="o">.</span><span class="n">LANCZOS</span><span class="p">:</span> <span class="s1">'PIL.Image.LANCZOS'</span><span class="p">,</span>
- <span class="n">Image</span><span class="o">.</span><span class="n">HAMMING</span><span class="p">:</span> <span class="s1">'PIL.Image.HAMMING'</span><span class="p">,</span>
- <span class="n">Image</span><span class="o">.</span><span class="n">BOX</span><span class="p">:</span> <span class="s1">'PIL.Image.BOX'</span><span class="p">,</span>
- <span class="p">}</span>
- <span class="k">def</span> <span class="nf">_pil_interp</span><span class="p">(</span><span class="n">method</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">'bicubic'</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">InterpolationMode</span><span class="o">.</span><span class="n">BICUBIC</span>
- <span class="k">elif</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">'lanczos'</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">InterpolationMode</span><span class="o">.</span><span class="n">LANCZOS</span>
- <span class="k">elif</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">'hamming'</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">InterpolationMode</span><span class="o">.</span><span class="n">HAMMING</span>
- <span class="k">elif</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">'nearest'</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">InterpolationMode</span><span class="o">.</span><span class="n">NEAREST</span>
- <span class="k">elif</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">'bilinear'</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">InterpolationMode</span><span class="o">.</span><span class="n">BILINEAR</span>
- <span class="k">elif</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">'box'</span><span class="p">:</span>
- <span class="k">return</span> <span class="n">InterpolationMode</span><span class="o">.</span><span class="n">BOX</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"interpolation type must be one of ['bilinear', 'bicubic', 'lanczos', 'hamming', "</span>
- <span class="s2">"'nearest', 'box'] for explicit interpolation type, or 'random' for random"</span><span class="p">)</span>
- <span class="n">_RANDOM_INTERPOLATION</span> <span class="o">=</span> <span class="p">(</span><span class="n">InterpolationMode</span><span class="o">.</span><span class="n">BILINEAR</span><span class="p">,</span> <span class="n">InterpolationMode</span><span class="o">.</span><span class="n">BICUBIC</span><span class="p">)</span>
- <div class="viewcode-block" id="RandomResizedCropAndInterpolation"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.RandomResizedCropAndInterpolation">[docs]</a><span class="k">class</span> <span class="nc">RandomResizedCropAndInterpolation</span><span class="p">(</span><span class="n">RandomResizedCrop</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Crop the given PIL Image to random size and aspect ratio with explicitly chosen or random interpolation.</span>
- <span class="sd"> A crop of random size (default: of 0.08 to 1.0) of the original size and a random</span>
- <span class="sd"> aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop</span>
- <span class="sd"> is finally resized to given size.</span>
- <span class="sd"> This is popularly used to train the Inception networks.</span>
- <span class="sd"> Args:</span>
- <span class="sd"> size: expected output size of each edge</span>
- <span class="sd"> scale: range of size of the origin size cropped</span>
- <span class="sd"> ratio: range of aspect ratio of the origin aspect ratio cropped</span>
- <span class="sd"> interpolation: Default: PIL.Image.BILINEAR</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="p">(</span><span class="mf">0.08</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">),</span> <span class="n">ratio</span><span class="o">=</span><span class="p">(</span><span class="mf">3.</span> <span class="o">/</span> <span class="mf">4.</span><span class="p">,</span> <span class="mf">4.</span> <span class="o">/</span> <span class="mf">3.</span><span class="p">),</span>
- <span class="n">interpolation</span><span class="o">=</span><span class="s1">'default'</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">RandomResizedCropAndInterpolation</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="n">size</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="n">scale</span><span class="p">,</span> <span class="n">ratio</span><span class="o">=</span><span class="n">ratio</span><span class="p">,</span> <span class="n">interpolation</span><span class="o">=</span><span class="n">interpolation</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">interpolation</span> <span class="o">==</span> <span class="s1">'random'</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span> <span class="o">=</span> <span class="n">_RANDOM_INTERPOLATION</span>
- <span class="k">elif</span> <span class="n">interpolation</span> <span class="o">==</span> <span class="s1">'default'</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span> <span class="o">=</span> <span class="n">InterpolationMode</span><span class="o">.</span><span class="n">BILINEAR</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span> <span class="o">=</span> <span class="n">_pil_interp</span><span class="p">(</span><span class="n">interpolation</span><span class="p">)</span>
- <div class="viewcode-block" id="RandomResizedCropAndInterpolation.forward"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.RandomResizedCropAndInterpolation.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">img</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Args:</span>
- <span class="sd"> img (PIL Image): Image to be cropped and resized.</span>
- <span class="sd"> Returns:</span>
- <span class="sd"> PIL Image: Randomly cropped and resized image.</span>
- <span class="sd"> """</span>
- <span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="n">w</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_params</span><span class="p">(</span><span class="n">img</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">ratio</span><span class="p">)</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span>
- <span class="n">interpolation</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">interpolation</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span>
- <span class="k">return</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">resized_crop</span><span class="p">(</span><span class="n">img</span><span class="p">,</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">size</span><span class="p">,</span> <span class="n">interpolation</span><span class="p">)</span></div>
- <span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span>
- <span class="n">interpolate_str</span> <span class="o">=</span> <span class="s1">' '</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="n">_pil_interpolation_to_str</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span><span class="p">])</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">interpolate_str</span> <span class="o">=</span> <span class="n">_pil_interpolation_to_str</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">interpolation</span><span class="p">]</span>
- <span class="n">format_string</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">+</span> <span class="s1">'(size=</span><span class="si">{0}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">size</span><span class="p">)</span>
- <span class="n">format_string</span> <span class="o">+=</span> <span class="s1">', scale=</span><span class="si">{0}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">tuple</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span><span class="p">))</span>
- <span class="n">format_string</span> <span class="o">+=</span> <span class="s1">', ratio=</span><span class="si">{0}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">tuple</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span> <span class="k">for</span> <span class="n">r</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">ratio</span><span class="p">))</span>
- <span class="n">format_string</span> <span class="o">+=</span> <span class="s1">', interpolation=</span><span class="si">{0}</span><span class="s1">)'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">interpolate_str</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">format_string</span></div>
- <span class="n">STAT_LOGGER_FONT_SIZE</span> <span class="o">=</span> <span class="mi">15</span>
- <div class="viewcode-block" id="DatasetStatisticsTensorboardLogger"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.DatasetStatisticsTensorboardLogger">[docs]</a><span class="k">class</span> <span class="nc">DatasetStatisticsTensorboardLogger</span><span class="p">:</span>
- <span class="n">logger</span> <span class="o">=</span> <span class="n">get_logger</span><span class="p">(</span><span class="vm">__name__</span><span class="p">)</span>
- <span class="n">DEFAULT_SUMMARY_PARAMS</span> <span class="o">=</span> <span class="p">{</span>
- <span class="s1">'sample_images'</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span> <span class="c1"># by default, 32 images will be sampled from each dataset</span>
- <span class="s1">'plot_class_distribution'</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
- <span class="s1">'plot_box_size_distribution'</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
- <span class="s1">'plot_anchors_coverage'</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span>
- <span class="s1">'max_batches'</span><span class="p">:</span> <span class="mi">30</span>
- <span class="p">}</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sg_logger</span><span class="p">:</span> <span class="n">AbstractSGLogger</span><span class="p">,</span> <span class="n">summary_params</span><span class="p">:</span> <span class="nb">dict</span> <span class="o">=</span> <span class="n">DEFAULT_SUMMARY_PARAMS</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span> <span class="o">=</span> <span class="n">sg_logger</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">summary_params</span> <span class="o">=</span> <span class="p">{</span><span class="o">**</span><span class="n">DatasetStatisticsTensorboardLogger</span><span class="o">.</span><span class="n">DEFAULT_SUMMARY_PARAMS</span><span class="p">,</span> <span class="o">**</span><span class="n">summary_params</span><span class="p">}</span>
- <div class="viewcode-block" id="DatasetStatisticsTensorboardLogger.analyze"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.DatasetStatisticsTensorboardLogger.analyze">[docs]</a> <span class="k">def</span> <span class="nf">analyze</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data_loader</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">,</span> <span class="n">dataset_params</span><span class="p">:</span> <span class="nb">dict</span><span class="p">,</span> <span class="n">title</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">anchors</span><span class="p">:</span> <span class="nb">list</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> :param data_loader: the dataset data loader</span>
- <span class="sd"> :param dataset_params: the dataset parameters</span>
- <span class="sd"> :param title: the title for this dataset (i.e. Coco 2017 test set)</span>
- <span class="sd"> :param anchors: the list of anchors used by the model. applicable only for detection datasets</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data_loader</span><span class="o">.</span><span class="n">dataset</span><span class="p">,</span> <span class="n">DetectionDataSet</span><span class="p">):</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_analyze_detection</span><span class="p">(</span><span class="n">data_loader</span><span class="o">=</span><span class="n">data_loader</span><span class="p">,</span> <span class="n">dataset_params</span><span class="o">=</span><span class="n">dataset_params</span><span class="p">,</span> <span class="n">title</span><span class="o">=</span><span class="n">title</span><span class="p">,</span> <span class="n">anchors</span><span class="o">=</span><span class="n">anchors</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">DatasetStatisticsTensorboardLogger</span><span class="o">.</span><span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span><span class="s1">'only DetectionDataSet are currently supported'</span><span class="p">)</span></div>
- <span class="k">def</span> <span class="nf">_analyze_detection</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data_loader</span><span class="p">,</span> <span class="n">dataset_params</span><span class="p">,</span> <span class="n">title</span><span class="p">,</span> <span class="n">anchors</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Analyze a detection dataset</span>
- <span class="sd"> :param data_loader: the dataset data loader</span>
- <span class="sd"> :param dataset_params: the dataset parameters</span>
- <span class="sd"> :param title: the title for this dataset (i.e. Coco 2017 test set)</span>
- <span class="sd"> :param anchors: the list of anchors used by the model. if not provided, anchors coverage will not be analyzed</span>
- <span class="sd"> """</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="n">color_mean</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
- <span class="n">color_std</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
- <span class="n">all_labels</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">tqdm</span><span class="p">(</span><span class="n">data_loader</span><span class="p">)):</span>
- <span class="k">if</span> <span class="n">i</span> <span class="o">>=</span> <span class="bp">self</span><span class="o">.</span><span class="n">summary_params</span><span class="p">[</span><span class="s1">'max_batches'</span><span class="p">]</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">break</span>
- <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
- <span class="k">if</span> <span class="n">images</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">></span> <span class="bp">self</span><span class="o">.</span><span class="n">summary_params</span><span class="p">[</span><span class="s1">'sample_images'</span><span class="p">]:</span>
- <span class="n">samples</span> <span class="o">=</span> <span class="n">images</span><span class="p">[:</span><span class="bp">self</span><span class="o">.</span><span class="n">summary_params</span><span class="p">[</span><span class="s1">'sample_images'</span><span class="p">]]</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">samples</span> <span class="o">=</span> <span class="n">images</span>
- <span class="n">pred</span> <span class="o">=</span> <span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">size</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">samples</span><span class="p">))]</span>
- <span class="n">class_names</span> <span class="o">=</span> <span class="n">data_loader</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">all_classes_list</span>
- <span class="n">result_images</span> <span class="o">=</span> <span class="n">DetectionVisualization</span><span class="o">.</span><span class="n">visualize_batch</span><span class="p">(</span><span class="n">image_tensor</span><span class="o">=</span><span class="n">samples</span><span class="p">,</span> <span class="n">pred_boxes</span><span class="o">=</span><span class="n">pred</span><span class="p">,</span>
- <span class="n">target_boxes</span><span class="o">=</span><span class="n">copy</span><span class="o">.</span><span class="n">deepcopy</span><span class="p">(</span><span class="n">labels</span><span class="p">),</span>
- <span class="n">batch_name</span><span class="o">=</span><span class="n">title</span><span class="p">,</span> <span class="n">class_names</span><span class="o">=</span><span class="n">class_names</span><span class="p">,</span>
- <span class="n">box_thickness</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
- <span class="n">gt_alpha</span><span class="o">=</span><span class="mf">1.0</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span><span class="o">.</span><span class="n">add_images</span><span class="p">(</span><span class="n">tag</span><span class="o">=</span><span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s1"> sample images'</span><span class="p">,</span> <span class="n">images</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">result_images</span><span class="p">)</span>
- <span class="o">.</span><span class="n">transpose</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">])[:,</span> <span class="p">::</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:])</span>
- <span class="n">all_labels</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>
- <span class="n">color_mean</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]),</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">color_std</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]),</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">all_labels</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span><span class="n">all_labels</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)[:,</span> <span class="mi">1</span><span class="p">:]</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">summary_params</span><span class="p">[</span><span class="s1">'plot_class_distribution'</span><span class="p">]:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_analyze_class_distribution</span><span class="p">(</span><span class="n">labels</span><span class="o">=</span><span class="n">all_labels</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">dataset_params</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">title</span><span class="o">=</span><span class="n">title</span><span class="p">)</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">summary_params</span><span class="p">[</span><span class="s1">'plot_box_size_distribution'</span><span class="p">]:</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_analyze_object_size_distribution</span><span class="p">(</span><span class="n">labels</span><span class="o">=</span><span class="n">all_labels</span><span class="p">,</span> <span class="n">title</span><span class="o">=</span><span class="n">title</span><span class="p">)</span>
- <span class="n">summary</span> <span class="o">=</span> <span class="s1">''</span>
- <span class="n">summary</span> <span class="o">+=</span> <span class="sa">f</span><span class="s1">'dataset size: </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">data_loader</span><span class="p">)</span><span class="si">}</span><span class="s1"> </span><span class="se">\n</span><span class="s1">'</span>
- <span class="n">summary</span> <span class="o">+=</span> <span class="sa">f</span><span class="s1">'color mean: </span><span class="si">{</span><span class="n">color_mean</span><span class="o">.</span><span class="n">average</span><span class="si">}</span><span class="s1"> </span><span class="se">\n</span><span class="s1">'</span>
- <span class="n">summary</span> <span class="o">+=</span> <span class="sa">f</span><span class="s1">'color std: </span><span class="si">{</span><span class="n">color_std</span><span class="o">.</span><span class="n">average</span><span class="si">}</span><span class="s1"> </span><span class="se">\n</span><span class="s1">'</span>
- <span class="k">if</span> <span class="n">anchors</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">coverage</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_analyze_anchors_coverage</span><span class="p">(</span><span class="n">anchors</span><span class="o">=</span><span class="n">anchors</span><span class="p">,</span> <span class="n">image_size</span><span class="o">=</span><span class="n">dataset_params</span><span class="o">.</span><span class="n">train_image_size</span><span class="p">,</span>
- <span class="n">title</span><span class="o">=</span><span class="n">title</span><span class="p">,</span> <span class="n">labels</span><span class="o">=</span><span class="n">all_labels</span><span class="p">)</span>
- <span class="n">summary</span> <span class="o">+=</span> <span class="sa">f</span><span class="s1">'anchors: </span><span class="si">{</span><span class="n">anchors</span><span class="si">}</span><span class="s1"> </span><span class="se">\n</span><span class="s1">'</span>
- <span class="n">summary</span> <span class="o">+=</span> <span class="sa">f</span><span class="s1">'anchors coverage: </span><span class="si">{</span><span class="n">coverage</span><span class="si">}</span><span class="s1"> </span><span class="se">\n</span><span class="s1">'</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span><span class="o">.</span><span class="n">add_text</span><span class="p">(</span><span class="n">tag</span><span class="o">=</span><span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s1"> Statistics'</span><span class="p">,</span> <span class="n">text_string</span><span class="o">=</span><span class="n">summary</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>
- <span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
- <span class="c1"># any exception is caught here. we dont want the DatasetStatisticsLogger to crash any training</span>
- <span class="n">DatasetStatisticsTensorboardLogger</span><span class="o">.</span><span class="n">logger</span><span class="o">.</span><span class="n">error</span><span class="p">(</span><span class="sa">f</span><span class="s1">'dataset analysis failed: </span><span class="si">{</span><span class="n">e</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_analyze_class_distribution</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">labels</span><span class="p">:</span> <span class="nb">list</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">title</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
- <span class="n">hist</span><span class="p">,</span> <span class="n">edges</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram</span><span class="p">(</span><span class="n">labels</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">num_classes</span><span class="p">)</span>
- <span class="n">f</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">,</span> <span class="mi">8</span><span class="p">])</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">bar</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">num_classes</span><span class="p">),</span> <span class="n">hist</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'#0504aa'</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.7</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="s1">'y'</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.75</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Value'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Frequency'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">yticks</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s1"> class distribution'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span><span class="o">.</span><span class="n">add_figure</span><span class="p">(</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s2"> class distribution"</span><span class="p">,</span> <span class="n">figure</span><span class="o">=</span><span class="n">f</span><span class="p">)</span>
- <span class="n">text_dist</span> <span class="o">=</span> <span class="s1">''</span>
- <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">val</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">hist</span><span class="p">):</span>
- <span class="n">text_dist</span> <span class="o">+=</span> <span class="sa">f</span><span class="s1">'[</span><span class="si">{</span><span class="n">i</span><span class="si">}</span><span class="s1">]: </span><span class="si">{</span><span class="n">val</span><span class="si">}</span><span class="s1">, '</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span><span class="o">.</span><span class="n">add_text</span><span class="p">(</span><span class="n">tag</span><span class="o">=</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s2"> class distribution"</span><span class="p">,</span> <span class="n">text_string</span><span class="o">=</span><span class="n">text_dist</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_analyze_object_size_distribution</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">labels</span><span class="p">:</span> <span class="nb">list</span><span class="p">,</span> <span class="n">title</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> This function will add two plots to the tensorboard.</span>
- <span class="sd"> one is a 2D histogram and the other is a scatter plot. in both cases the X axis is the object width and Y axis</span>
- <span class="sd"> is the object width (both normalized by image size)</span>
- <span class="sd"> :param labels: all the labels of the dataset of the shape [class_label, x_center, y_center, w, h]</span>
- <span class="sd"> :param title: the dataset title</span>
- <span class="sd"> """</span>
- <span class="c1"># histogram plot</span>
- <span class="n">hist</span><span class="p">,</span> <span class="n">xedges</span><span class="p">,</span> <span class="n">yedges</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">histogram2d</span><span class="p">(</span><span class="n">labels</span><span class="p">[:,</span> <span class="mi">4</span><span class="p">],</span> <span class="n">labels</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">],</span> <span class="mi">50</span><span class="p">)</span> <span class="c1"># x and y are deliberately switched</span>
- <span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span>
- <span class="n">fig</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s1"> boxes w/h distribution'</span><span class="p">)</span>
- <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">121</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'W'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'H'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">hist</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span> <span class="n">interpolation</span><span class="o">=</span><span class="s1">'nearest'</span><span class="p">,</span> <span class="n">origin</span><span class="o">=</span><span class="s1">'lower'</span><span class="p">,</span>
- <span class="n">extent</span><span class="o">=</span><span class="p">[</span><span class="n">xedges</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">xedges</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">yedges</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">yedges</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]])</span>
- <span class="c1"># scatter plot</span>
- <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span> <span class="o">></span> <span class="mi">10000</span><span class="p">:</span>
- <span class="c1"># we randomly sample just 10000 objects so that the scatter plot will not get too dense</span>
- <span class="n">labels</span> <span class="o">=</span> <span class="n">labels</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">10000</span><span class="p">)]</span>
- <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">122</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'W'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'H'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">labels</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">],</span> <span class="n">labels</span><span class="p">[:,</span> <span class="mi">4</span><span class="p">],</span> <span class="n">marker</span><span class="o">=</span><span class="s1">'.'</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span><span class="o">.</span><span class="n">add_figure</span><span class="p">(</span><span class="n">tag</span><span class="o">=</span><span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s1"> boxes w/h distribution'</span><span class="p">,</span> <span class="n">figure</span><span class="o">=</span><span class="n">fig</span><span class="p">)</span>
- <span class="nd">@staticmethod</span>
- <span class="k">def</span> <span class="nf">_get_rect</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">):</span>
- <span class="n">min_w</span> <span class="o">=</span> <span class="n">w</span> <span class="o">/</span> <span class="mf">4.0</span>
- <span class="n">min_h</span> <span class="o">=</span> <span class="n">h</span> <span class="o">/</span> <span class="mf">4.0</span>
- <span class="k">return</span> <span class="n">Rectangle</span><span class="p">((</span><span class="n">min_w</span><span class="p">,</span> <span class="n">min_h</span><span class="p">),</span> <span class="n">w</span> <span class="o">*</span> <span class="mi">4</span> <span class="o">-</span> <span class="n">min_w</span><span class="p">,</span> <span class="n">h</span> <span class="o">*</span> <span class="mi">4</span> <span class="o">-</span> <span class="n">min_h</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">edgecolor</span><span class="o">=</span><span class="s1">'b'</span><span class="p">,</span> <span class="n">facecolor</span><span class="o">=</span><span class="s1">'none'</span><span class="p">)</span>
- <span class="nd">@staticmethod</span>
- <span class="k">def</span> <span class="nf">_get_score</span><span class="p">(</span><span class="n">anchors</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">points</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">image_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Calculate the ratio (and 1/ratio) between each anchor width and height and each point (representing a possible</span>
- <span class="sd"> object width and height).</span>
- <span class="sd"> i.e. for an anchor with w=10,h=20 the point w=11,h=25 will have the ratios 11/10=1.1 and 25/20=1.25</span>
- <span class="sd"> or 10/11=0.91 and 20/25=0.8 respectively</span>
- <span class="sd"> :param anchors: array of anchors of the shape [2,N]</span>
- <span class="sd"> :param points: array of points of the shape [2,M]</span>
- <span class="sd"> :param image_size the size of the input image</span>
- <span class="sd"> :returns: an array of size [image_size - 1, image_size - 1] where each cell i,j represent the minimum ratio</span>
- <span class="sd"> for that cell (point) from all anchors</span>
- <span class="sd"> """</span>
- <span class="n">ratio</span> <span class="o">=</span> <span class="n">anchors</span><span class="p">[:,</span> <span class="p">:,</span> <span class="kc">None</span><span class="p">]</span> <span class="o">/</span> <span class="n">points</span><span class="p">[:,</span> <span class="p">]</span>
- <span class="n">inv_ratio</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">/</span> <span class="n">ratio</span>
- <span class="n">min_ratio</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">np</span><span class="o">.</span><span class="n">minimum</span><span class="p">(</span><span class="n">ratio</span><span class="p">,</span> <span class="n">inv_ratio</span><span class="p">)</span>
- <span class="n">min_ratio</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">min_ratio</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
- <span class="n">to_closest_anchor</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">min_ratio</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
- <span class="n">to_closest_anchor</span><span class="p">[</span><span class="n">to_closest_anchor</span> <span class="o">></span> <span class="mf">0.75</span><span class="p">]</span> <span class="o">=</span> <span class="mi">2</span>
- <span class="k">return</span> <span class="n">to_closest_anchor</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">image_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_analyze_anchors_coverage</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">anchors</span><span class="p">:</span> <span class="nb">list</span><span class="p">,</span> <span class="n">image_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">labels</span><span class="p">:</span> <span class="nb">list</span><span class="p">,</span> <span class="n">title</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> This function will add anchors coverage plots to the tensorboard.</span>
- <span class="sd"> :param anchors: a list of anchors</span>
- <span class="sd"> :param image_size: the input image size for this training</span>
- <span class="sd"> :param labels: all the labels of the dataset of the shape [class_label, x_center, y_center, w, h]</span>
- <span class="sd"> :param title: the dataset title</span>
- <span class="sd"> """</span>
- <span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span> <span class="mi">5</span><span class="p">))</span>
- <span class="n">fig</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s1"> anchors coverage'</span><span class="p">)</span>
- <span class="c1"># box style plot</span>
- <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">121</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'W'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'H'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">image_size</span><span class="p">])</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">image_size</span><span class="p">])</span>
- <span class="n">anchors</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">anchors</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">anchors</span><span class="p">)):</span>
- <span class="n">rect</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_rect</span><span class="p">(</span><span class="n">anchors</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">],</span> <span class="n">anchors</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">])</span>
- <span class="n">rect</span><span class="o">.</span><span class="n">set_alpha</span><span class="p">(</span><span class="mf">0.3</span><span class="p">)</span>
- <span class="n">rect</span><span class="o">.</span><span class="n">set_facecolor</span><span class="p">([</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">(),</span> <span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">(),</span> <span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">(),</span> <span class="mf">0.3</span><span class="p">])</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">add_patch</span><span class="p">(</span><span class="n">rect</span><span class="p">)</span>
- <span class="c1"># distance from anchor plot</span>
- <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">122</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'W'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'H'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">image_size</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">image_size</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">xx</span><span class="p">,</span> <span class="n">yy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">sparse</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
- <span class="n">points</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">([</span><span class="n">xx</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">),</span> <span class="n">yy</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)])</span>
- <span class="n">color</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_score</span><span class="p">(</span><span class="n">anchors</span><span class="p">,</span> <span class="n">points</span><span class="p">,</span> <span class="n">image_size</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'W'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'H'</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">STAT_LOGGER_FONT_SIZE</span><span class="p">)</span>
- <span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">color</span><span class="p">,</span> <span class="n">interpolation</span><span class="o">=</span><span class="s1">'nearest'</span><span class="p">,</span> <span class="n">origin</span><span class="o">=</span><span class="s1">'lower'</span><span class="p">,</span>
- <span class="n">extent</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="n">image_size</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">image_size</span><span class="p">])</span>
- <span class="c1"># calculate the coverage for the dataset labels</span>
- <span class="n">cover_masks</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">anchors</span><span class="p">)):</span>
- <span class="n">w_max</span> <span class="o">=</span> <span class="p">(</span><span class="n">anchors</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">/</span> <span class="n">image_size</span><span class="p">)</span> <span class="o">*</span> <span class="mi">4</span>
- <span class="n">w_min</span> <span class="o">=</span> <span class="p">(</span><span class="n">anchors</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">/</span> <span class="n">image_size</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.25</span>
- <span class="n">h_max</span> <span class="o">=</span> <span class="p">(</span><span class="n">anchors</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">/</span> <span class="n">image_size</span><span class="p">)</span> <span class="o">*</span> <span class="mi">4</span>
- <span class="n">h_min</span> <span class="o">=</span> <span class="p">(</span><span class="n">anchors</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">/</span> <span class="n">image_size</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.25</span>
- <span class="n">cover_masks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">logical_and</span><span class="p">(</span>
- <span class="n">np</span><span class="o">.</span><span class="n">logical_and</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">logical_and</span><span class="p">(</span><span class="n">labels</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">]</span> <span class="o"><</span> <span class="n">w_max</span><span class="p">,</span> <span class="n">labels</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">></span> <span class="n">w_min</span><span class="p">),</span> <span class="n">labels</span><span class="p">[:,</span> <span class="mi">4</span><span class="p">]</span> <span class="o"><</span> <span class="n">h_max</span><span class="p">),</span>
- <span class="n">labels</span><span class="p">[:,</span> <span class="mi">4</span><span class="p">]</span> <span class="o">></span> <span class="n">h_min</span><span class="p">))</span>
- <span class="n">cover_masks</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">cover_masks</span><span class="p">)</span>
- <span class="n">coverage</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">count_nonzero</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">(</span><span class="n">cover_masks</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">))</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span><span class="o">.</span><span class="n">add_figure</span><span class="p">(</span><span class="n">tag</span><span class="o">=</span><span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">title</span><span class="si">}</span><span class="s1"> anchors coverage'</span><span class="p">,</span> <span class="n">figure</span><span class="o">=</span><span class="n">fig</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">coverage</span></div>
- <div class="viewcode-block" id="get_color_augmentation"><a class="viewcode-back" href="../../../../super_gradients.training.datasets.html#super_gradients.training.datasets.datasets_utils.get_color_augmentation">[docs]</a><span class="k">def</span> <span class="nf">get_color_augmentation</span><span class="p">(</span><span class="n">rand_augment_config_string</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">color_jitter</span><span class="p">:</span> <span class="nb">tuple</span><span class="p">,</span> <span class="n">crop_size</span><span class="o">=</span><span class="mi">224</span><span class="p">,</span> <span class="n">img_mean</span><span class="o">=</span><span class="p">[</span><span class="mf">0.485</span><span class="p">,</span> <span class="mf">0.456</span><span class="p">,</span> <span class="mf">0.406</span><span class="p">]):</span>
- <span class="sd">"""</span>
- <span class="sd"> Returns color augmentation class. As these augmentation cannot work on top one another, only one is returned according to rand_augment_config_string</span>
- <span class="sd"> :param rand_augment_config_string: string which defines the auto augment configurations. If none, color jitter will be returned. For possibile values see auto_augment.py</span>
- <span class="sd"> :param color_jitter: tuple for color jitter value.</span>
- <span class="sd"> :param crop_size: relevant only for auto augment</span>
- <span class="sd"> :param img_mean: relevant only for auto augment</span>
- <span class="sd"> :return: RandAugment transform or ColorJitter</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="n">rand_augment_config_string</span><span class="p">:</span>
- <span class="n">auto_augment_params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">translate_const</span><span class="o">=</span><span class="nb">int</span><span class="p">(</span><span class="n">crop_size</span> <span class="o">*</span> <span class="mf">0.45</span><span class="p">),</span>
- <span class="n">img_mean</span><span class="o">=</span><span class="nb">tuple</span><span class="p">([</span><span class="nb">min</span><span class="p">(</span><span class="mi">255</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="mi">255</span> <span class="o">*</span> <span class="n">x</span><span class="p">))</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">img_mean</span><span class="p">]))</span>
- <span class="n">color_augmentation</span> <span class="o">=</span> <span class="n">rand_augment_transform</span><span class="p">(</span><span class="n">rand_augment_config_string</span><span class="p">,</span> <span class="n">auto_augment_params</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span> <span class="c1"># RandAugment includes colorjitter like augmentations, both cannot be applied together.</span>
- <span class="n">color_augmentation</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">ColorJitter</span><span class="p">(</span><span class="o">*</span><span class="n">color_jitter</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">color_augmentation</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|