Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

dandiset.yaml 4.1 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  1. '@context': https://raw.githubusercontent.com/dandi/schema/master/releases/0.6.9/context.json
  2. about: []
  3. access:
  4. - schemaKey: AccessRequirements
  5. status: dandi:OpenAccess
  6. assetsSummary:
  7. approach:
  8. - name: electrophysiological approach
  9. schemaKey: ApproachType
  10. dataStandard:
  11. - identifier: RRID:SCR_015242
  12. name: Neurodata Without Borders (NWB)
  13. schemaKey: StandardsType
  14. measurementTechnique:
  15. - name: spike sorting technique
  16. schemaKey: MeasurementTechniqueType
  17. numberOfBytes: 6227009984
  18. numberOfFiles: 4
  19. numberOfSubjects: 2
  20. schemaKey: AssetsSummary
  21. species:
  22. - identifier: http://purl.obolibrary.org/obo/NCBITaxon_10090
  23. name: Mus musculus - House mouse
  24. schemaKey: SpeciesType
  25. variableMeasured:
  26. - Units
  27. citation: Zhu, Hanlin; He, Fei; Zolotavin, Pavlo; Patel, Saumil; Tolias, Andreas S;
  28. Luan, Lan; Xie, Chong (2025) A dataset of stimulus evoked spiking timestamps from
  29. same neurons across multiple days recorded with advanced electrodes (Version draft)
  30. [Data set]. DANDI Archive. https://dandiarchive.org/dandiset/001431/draft
  31. contributor:
  32. - affiliation: []
  33. awardNumber: ''
  34. email: hanlin.zhu@rice.edu
  35. includeInCitation: true
  36. name: Zhu, Hanlin
  37. roleName:
  38. - dcite:ContactPerson
  39. schemaKey: Person
  40. - includeInCitation: true
  41. name: He, Fei
  42. schemaKey: Person
  43. - includeInCitation: true
  44. name: Zolotavin, Pavlo
  45. schemaKey: Person
  46. - includeInCitation: true
  47. name: Patel, Saumil
  48. schemaKey: Person
  49. - awardNumber: UF1NS126566
  50. includeInCitation: true
  51. name: Tolias, Andreas S
  52. schemaKey: Person
  53. - awardNumber: R01EY036094; R01NS109361
  54. includeInCitation: true
  55. name: Luan, Lan
  56. schemaKey: Person
  57. - awardNumber: R01NS102917; U01NS115588; R01EY036094
  58. email: chongxie@rice.edu
  59. includeInCitation: true
  60. name: Xie, Chong
  61. schemaKey: Person
  62. dateCreated: '2025-04-30T20:36:37.975496+00:00'
  63. description: 'Publication: "Temporal coding carries more stable cortical visual representations
  64. than firing rate over time".The dataset contains spike timestamps (bin number) relative
  65. to stimulus onset. 4 types of visual stimuli were displayed with 30+ trials each
  66. day for 15 days. Access variables in the _tsXX.nwb for XX stimuli (dg/sg/rfg/ni)
  67. with command nwb.units.getRow(XXX) where XXX is the trial number, and the result
  68. is timestamps of firings in that trial (multiply 0.5 to get unit in ms). To understand
  69. which neuron, which day, which condition, Nth trial of that condition, get information
  70. matrix from nwb.acquisition.get(''myMatrix'') and refer to its first 4 rows, respectively.
  71. The condition order is DG: 0:22.5:337.5 degree; SG: [0:30:150 degree, 0.02cpd],[0:30:150
  72. degree 0.04cpd] etc; RFG: [horizontal locations left to right , vertical location
  73. top row],[horizontal locations left to right, vertical location second row from
  74. top] etc. NI: 100 images not in a particular order. Access variables in the _tuning.nwb
  75. with command nwb.acquisition.get(''attendance'') the variables are the following
  76. 1.''attendance'' explains for each 1204 neuron and 15 days, whether that neuron
  77. was detected/tracked. 2.''highAttendanceUnit'' further shortlists 1037 neurons out
  78. of the 1204 that appeared for more than 2 days. 3.''notInleast15percentPoorlyTuned''
  79. further shortlist ~830 neurons out of the 1037 high attendance units that are not
  80. among the worst 15% in their tuning to natural image stimuli across days. 4-7.''tuned_XX''
  81. explains for XX stimuli (DG/SG/RFG/NI) whether the firing rate-based tuning to stimuli
  82. was significant for a given high attendance neuron in any given day. 8.''whichAnimalPerUnit''
  83. to get the animal from which the unit was recorded from '
  84. ethicsApproval: []
  85. id: DANDI:001431/draft
  86. identifier: DANDI:001431
  87. license:
  88. - spdx:CC-BY-4.0
  89. manifestLocation:
  90. - https://api.dandiarchive.org/api/dandisets/001431/versions/draft/assets/
  91. name: A dataset of stimulus evoked spiking timestamps from same neurons across multiple
  92. days recorded with advanced electrodes
  93. relatedResource: []
  94. repository: https://dandiarchive.org
  95. schemaKey: Dandiset
  96. schemaVersion: 0.6.9
  97. url: https://dandiarchive.org/dandiset/001431/draft
  98. version: draft
  99. wasGeneratedBy: []
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...