1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
- '@context': https://raw.githubusercontent.com/dandi/schema/master/releases/0.6.4/context.json
- about: []
- access:
- - schemaKey: AccessRequirements
- status: dandi:OpenAccess
- acknowledgement: DHK and MN acknowledge support from the United States Army grant
- MURI W911NF1910280 and the National Institutes of Health grants U19NS128613 and
- R01AT012312.
- assetsSummary:
- approach:
- - name: microscopy approach; cell population imaging
- schemaKey: ApproachType
- dataStandard:
- - identifier: RRID:SCR_015242
- name: Neurodata Without Borders (NWB)
- schemaKey: StandardsType
- measurementTechnique:
- - name: two-photon microscopy technique
- schemaKey: MeasurementTechniqueType
- - name: analytical technique
- schemaKey: MeasurementTechniqueType
- - name: surgical technique
- schemaKey: MeasurementTechniqueType
- numberOfBytes: 5324803662
- numberOfFiles: 14
- numberOfSubjects: 9
- schemaKey: AssetsSummary
- species:
- - identifier: http://purl.obolibrary.org/obo/NCBITaxon_10090
- name: Mus musculus - House mouse
- schemaKey: SpeciesType
- variableMeasured:
- - TwoPhotonSeries
- - ImagingPlane
- - OpticalChannel
- - ProcessingModule
- - PlaneSegmentation
- citation: Zhao, Yue; Boster, Kimberly; Kelley, Douglas; Raicevic, Nikola (2023) BrainFlowZZZ
- (Version 0.230602.1307) [Data set]. DANDI archive. https://dandiarchive.org/dandiset/000491/0.230602.1307
- contributor:
- - affiliation: []
- email: yuezhao@rochester.edu
- includeInCitation: true
- name: Zhao, Yue
- roleName:
- - dcite:ContactPerson
- - dcite:DataManager
- - dcite:Maintainer
- schemaKey: Person
- - affiliation:
- - identifier: https://ror.org/022kthw22
- name: University of Rochester
- schemaKey: Affiliation
- identifier: 0000-0001-5178-128X
- includeInCitation: true
- name: Boster, Kimberly
- roleName:
- - dcite:Researcher
- schemaKey: Person
- - affiliation:
- - identifier: https://ror.org/022kthw22
- name: University of Rochester
- schemaKey: Affiliation
- email: d.h.kelley@rochester.edu
- identifier: 0000-0001-9658-2954
- includeInCitation: true
- name: Kelley, Douglas
- roleName:
- - dcite:ContactPerson
- - dcite:ProjectLeader
- - dcite:ProjectManager
- schemaKey: Person
- - awardNumber: MURI W911NF1910280
- contactPoint: []
- identifier: https://ror.org/035w1gb98
- includeInCitation: false
- name: United States Department of the Army
- roleName:
- - dcite:Funder
- schemaKey: Organization
- - awardNumber: U19NS128613 and R01AT012312
- contactPoint: []
- identifier: https://ror.org/01cwqze88
- includeInCitation: false
- name: National Institutes of Health
- roleName:
- - dcite:Funder
- schemaKey: Organization
- - affiliation:
- - identifier: https://ror.org/022kthw22
- name: University of Rochester
- schemaKey: Affiliation
- email: nraicevi@u.rochester.edu
- includeInCitation: true
- name: Raicevic, Nikola
- roleName:
- - dcite:Author
- schemaKey: Person
- dateCreated: '2023-04-26T03:36:47.214653+00:00'
- datePublished: '2023-06-02T13:07:32.205531+00:00'
- description: "Dataset from the 2023 manuscript titled **_Sizes and Shapes of Perivascular
- Spaces Surrounding Murine Pial Arteries_** by Raicevic et al. DOI: 10.21203/rs.3.rs-2587250/v1.
- \ \n\n## Overview\nThe **14 datasets** from **9 subjects** include the original
- 3D two photon microscopy data from three channels which show tracer in the vessel,
- PVSs, and microspheres. Additionally, each dataset also includes the final binary
- segmentation of the PVS and vessel used to generate the model and statistics in
- the manuscript. Additional details regarding the subjects, tracer injection, image
- acquisition, and segmentation can be found in the manuscript at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949243/.\n\n##
- Content\nFor easier navigation, below is a mapping between the NWB file names and
- the datasets referenced in the manuscript.\n1. sub-21-07-19-b-act (Mouse 6, dataset
- K)\n2. sub-21-09-01-b-act (Mouse 8, dataset M)\n3. sub-21-09-20-b-act (Mouse 9,
- dataset N)\n4. sub-21-10-08-b-act (Mouse 7, dataset L)\n5. sub-BPN-M4 (Mouse 3,
- dataset E and F)\n6. sub-BPN-M6 (Mouse 4, dataset G and H)\n7. sub-BPN-M7 (Mouse
- 5, dataset I and J)\n8. sub-BPN-OLD-M2 (Mouse 1, dataset A and B)\n9. sub-BPN-OLD-M3
- (Mouse 2, dataset C and D)\n\n## Data Reading Instructions\nThe .nwb files can be
- viewed using PyNWB or MatNWB. To install and set up, please visit <https://www.nwb.org/how-to-use/>.
- Below, we show how to open and view an .nwb file using MatNWB. \n### Loading the
- image data\n```matlab\nnwb = nwbRead(PATH_TO_NWB_FILE);\n\n% first check what color
- channels are present\n>> nwb.acquisition\nans = \n 3×1 Set array with properties:\n
- \ TwoPhotonSeriesChanA: [types.core.TwoPhotonSeries]\n TwoPhotonSeriesChanB:
- [types.core.TwoPhotonSeries]\n TwoPhotonSeriesChanC: [types.core.TwoPhotonSeries]\n```\nThe
- above code load the .nwb file and the output tells us that there are three channels
- present in the nwb file, which are ChanA, ChanB, and ChanC. Then, to load the actual
- data from a channel,\n```matlab\n% load the image data from ChanA\n>> chanAdata
- = nwb.acquisition.get('TwoPhotonSeriesChanA').data.load();\n\n% check its shape\n>>
- size(chanAdata)\nans =\n 1 512 512 181\n```\n### Loading the segmentation
- masks\nFor an overview of the mask for ChanA, for example,\n```matlab\n>> nwb.processing.get('ophys').nwbdatainterface.get('ImageSegmentation').planesegmentation.get('PlaneSegmentationChanA').image_mask.data\nans
- = \n DataStub with properties:\n filename: '.\\sub-BPN-M4_ses-20210524-m1_obj-1c8nyxo_ophys.nwb'\n
- \ path: '/processing/ophys/ImageSegmentation/PlaneSegmentationChanA/image_mask'\n
- \ dims: [512 512 181]\n ndims: 3\n dataType: 'logical'\n```\nTo load
- the actual mask data into array (may take several seconds to load),\n```matlab\n%
- load mask from ChanA\n>> mask = nwb.processing.get('ophys').nwbdatainterface.get('ImageSegmentation').planesegmentation.get('PlaneSegmentationChanA').image_mask.data.load();\n\n%
- check its shape\n>> size(mask)\nans =\n 512 512 181\n```"
- ethicsApproval: []
- id: DANDI:000491/0.230602.1307
- identifier: DANDI:000491
- keywords: []
- license:
- - spdx:CC-BY-4.0
- manifestLocation:
- - https://dandiarchive.s3.amazonaws.com/dandisets/000491/0.230602.1307/assets.yaml
- name: BrainFlowZZZ
- protocol: []
- publishedBy:
- endDate: '2023-06-02T13:07:32.205531+00:00'
- id: urn:uuid:2165d23e-389e-4efd-8ccf-c841c4648cd4
- name: DANDI publish
- schemaKey: PublishActivity
- startDate: '2023-06-02T13:07:32.205531+00:00'
- wasAssociatedWith:
- - id: urn:uuid:ed323eeb-c2bd-4cb1-8c6e-cbccda4c4e30
- identifier: RRID:SCR_017571
- name: DANDI API
- schemaKey: Software
- version: 0.1.0
- relatedResource: []
- repository: https://dandiarchive.org
- schemaKey: Dandiset
- schemaVersion: 0.6.4
- studyTarget: []
- url: https://dandiarchive.org/dandiset/000491/0.230602.1307
- version: 0.230602.1307
- wasGeneratedBy: []
|