Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

1dc270a0-1dfd-4a2f-8496-cbe56148d3b3 5.3 KB
Raw

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
  1. from datetime import datetime
  2. import pytest
  3. import pytz
  4. from pandas.errors import NullFrequencyError
  5. import pandas as pd
  6. from pandas import (
  7. DatetimeIndex,
  8. Series,
  9. date_range,
  10. )
  11. import pandas._testing as tm
  12. START, END = datetime(2009, 1, 1), datetime(2010, 1, 1)
  13. class TestDatetimeIndexShift:
  14. # -------------------------------------------------------------
  15. # DatetimeIndex.shift is used in integer addition
  16. def test_dti_shift_tzaware(self, tz_naive_fixture):
  17. # GH#9903
  18. tz = tz_naive_fixture
  19. idx = DatetimeIndex([], name="xxx", tz=tz)
  20. tm.assert_index_equal(idx.shift(0, freq="H"), idx)
  21. tm.assert_index_equal(idx.shift(3, freq="H"), idx)
  22. idx = DatetimeIndex(
  23. ["2011-01-01 10:00", "2011-01-01 11:00", "2011-01-01 12:00"],
  24. name="xxx",
  25. tz=tz,
  26. freq="H",
  27. )
  28. tm.assert_index_equal(idx.shift(0, freq="H"), idx)
  29. exp = DatetimeIndex(
  30. ["2011-01-01 13:00", "2011-01-01 14:00", "2011-01-01 15:00"],
  31. name="xxx",
  32. tz=tz,
  33. freq="H",
  34. )
  35. tm.assert_index_equal(idx.shift(3, freq="H"), exp)
  36. exp = DatetimeIndex(
  37. ["2011-01-01 07:00", "2011-01-01 08:00", "2011-01-01 09:00"],
  38. name="xxx",
  39. tz=tz,
  40. freq="H",
  41. )
  42. tm.assert_index_equal(idx.shift(-3, freq="H"), exp)
  43. def test_dti_shift_freqs(self):
  44. # test shift for DatetimeIndex and non DatetimeIndex
  45. # GH#8083
  46. drange = date_range("20130101", periods=5)
  47. result = drange.shift(1)
  48. expected = DatetimeIndex(
  49. ["2013-01-02", "2013-01-03", "2013-01-04", "2013-01-05", "2013-01-06"],
  50. freq="D",
  51. )
  52. tm.assert_index_equal(result, expected)
  53. result = drange.shift(-1)
  54. expected = DatetimeIndex(
  55. ["2012-12-31", "2013-01-01", "2013-01-02", "2013-01-03", "2013-01-04"],
  56. freq="D",
  57. )
  58. tm.assert_index_equal(result, expected)
  59. result = drange.shift(3, freq="2D")
  60. expected = DatetimeIndex(
  61. ["2013-01-07", "2013-01-08", "2013-01-09", "2013-01-10", "2013-01-11"],
  62. freq="D",
  63. )
  64. tm.assert_index_equal(result, expected)
  65. def test_dti_shift_int(self):
  66. rng = date_range("1/1/2000", periods=20)
  67. result = rng + 5 * rng.freq
  68. expected = rng.shift(5)
  69. tm.assert_index_equal(result, expected)
  70. result = rng - 5 * rng.freq
  71. expected = rng.shift(-5)
  72. tm.assert_index_equal(result, expected)
  73. def test_dti_shift_no_freq(self):
  74. # GH#19147
  75. dti = DatetimeIndex(["2011-01-01 10:00", "2011-01-01"], freq=None)
  76. with pytest.raises(NullFrequencyError, match="Cannot shift with no freq"):
  77. dti.shift(2)
  78. @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"])
  79. def test_dti_shift_localized(self, tzstr):
  80. dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI")
  81. dr_tz = dr.tz_localize(tzstr)
  82. result = dr_tz.shift(1, "10T")
  83. assert result.tz == dr_tz.tz
  84. def test_dti_shift_across_dst(self):
  85. # GH 8616
  86. idx = date_range("2013-11-03", tz="America/Chicago", periods=7, freq="H")
  87. s = Series(index=idx[:-1], dtype=object)
  88. result = s.shift(freq="H")
  89. expected = Series(index=idx[1:], dtype=object)
  90. tm.assert_series_equal(result, expected)
  91. @pytest.mark.parametrize(
  92. "shift, result_time",
  93. [
  94. [0, "2014-11-14 00:00:00"],
  95. [-1, "2014-11-13 23:00:00"],
  96. [1, "2014-11-14 01:00:00"],
  97. ],
  98. )
  99. def test_dti_shift_near_midnight(self, shift, result_time):
  100. # GH 8616
  101. dt = datetime(2014, 11, 14, 0)
  102. dt_est = pytz.timezone("EST").localize(dt)
  103. s = Series(data=[1], index=[dt_est])
  104. result = s.shift(shift, freq="H")
  105. expected = Series(1, index=DatetimeIndex([result_time], tz="EST"))
  106. tm.assert_series_equal(result, expected)
  107. def test_shift_periods(self):
  108. # GH#22458 : argument 'n' was deprecated in favor of 'periods'
  109. idx = date_range(start=START, end=END, periods=3)
  110. tm.assert_index_equal(idx.shift(periods=0), idx)
  111. tm.assert_index_equal(idx.shift(0), idx)
  112. @pytest.mark.parametrize("freq", ["B", "C"])
  113. def test_shift_bday(self, freq):
  114. rng = date_range(START, END, freq=freq)
  115. shifted = rng.shift(5)
  116. assert shifted[0] == rng[5]
  117. assert shifted.freq == rng.freq
  118. shifted = rng.shift(-5)
  119. assert shifted[5] == rng[0]
  120. assert shifted.freq == rng.freq
  121. shifted = rng.shift(0)
  122. assert shifted[0] == rng[0]
  123. assert shifted.freq == rng.freq
  124. def test_shift_bmonth(self):
  125. rng = date_range(START, END, freq=pd.offsets.BMonthEnd())
  126. shifted = rng.shift(1, freq=pd.offsets.BDay())
  127. assert shifted[0] == rng[0] + pd.offsets.BDay()
  128. rng = date_range(START, END, freq=pd.offsets.BMonthEnd())
  129. with tm.assert_produces_warning(pd.errors.PerformanceWarning):
  130. shifted = rng.shift(1, freq=pd.offsets.CDay())
  131. assert shifted[0] == rng[0] + pd.offsets.CDay()
  132. def test_shift_empty(self):
  133. # GH#14811
  134. dti = date_range(start="2016-10-21", end="2016-10-21", freq="BM")
  135. result = dti.shift(1)
  136. tm.assert_index_equal(result, dti)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...