Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

logs.log 31 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  1. 2023-06-21 16:49:04,182:WARNING:
  2. 'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
  3. 2023-06-21 16:49:04,183:WARNING:
  4. 'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
  5. 2023-06-21 16:49:04,183:WARNING:
  6. 'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
  7. 2023-06-21 16:49:04,183:WARNING:
  8. 'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
  9. 2023-06-21 16:49:04,471:WARNING:
  10. 'prophet' is a soft dependency and not included in the pycaret installation. Please run: `pip install prophet` to install.
  11. 2023-06-21 16:49:04,589:INFO:PyCaret RegressionExperiment
  12. 2023-06-21 16:49:04,589:INFO:Logging name: diamond
  13. 2023-06-21 16:49:04,589:INFO:ML Usecase: MLUsecase.REGRESSION
  14. 2023-06-21 16:49:04,589:INFO:version 3.0.2
  15. 2023-06-21 16:49:04,589:INFO:Initializing setup()
  16. 2023-06-21 16:49:04,589:INFO:self.USI: 70d6
  17. 2023-06-21 16:49:04,589:INFO:self._variable_keys: {'USI', 'X', 'html_param', 'memory', 'exp_name_log', '_ml_usecase', 'y_test', 'y', 'target_param', 'log_plots_param', 'logging_param', 'gpu_param', 'fold_generator', 'fold_groups_param', 'fold_shuffle_param', 'y_train', 'pipeline', 'idx', '_available_plots', 'transform_target_param', 'X_test', 'X_train', 'seed', 'exp_id', 'gpu_n_jobs_param', 'data', 'n_jobs_param'}
  18. 2023-06-21 16:49:04,589:INFO:Checking environment
  19. 2023-06-21 16:49:04,589:INFO:python_version: 3.10.10
  20. 2023-06-21 16:49:04,589:INFO:python_build: ('v3.10.10:aad5f6a891', 'Feb 7 2023 08:47:40')
  21. 2023-06-21 16:49:04,589:INFO:machine: arm64
  22. 2023-06-21 16:49:04,589:INFO:platform: macOS-12.3-arm64-arm-64bit
  23. 2023-06-21 16:49:04,589:INFO:Memory: svmem(total=17179869184, available=5329797120, percent=69.0, used=7255687168, free=71467008, active=5269946368, inactive=5149851648, wired=1985740800)
  24. 2023-06-21 16:49:04,590:INFO:Physical Core: 8
  25. 2023-06-21 16:49:04,590:INFO:Logical Core: 8
  26. 2023-06-21 16:49:04,590:INFO:Checking libraries
  27. 2023-06-21 16:49:04,590:INFO:System:
  28. 2023-06-21 16:49:04,590:INFO: python: 3.10.10 (v3.10.10:aad5f6a891, Feb 7 2023, 08:47:40) [Clang 13.0.0 (clang-1300.0.29.30)]
  29. 2023-06-21 16:49:04,590:INFO:executable: /Users/vu/Downloads/mlops/dagshub_project/.venv/bin/python
  30. 2023-06-21 16:49:04,590:INFO: machine: macOS-12.3-arm64-arm-64bit
  31. 2023-06-21 16:49:04,590:INFO:PyCaret required dependencies:
  32. 2023-06-21 16:49:04,590:INFO: pip: 23.0.1
  33. 2023-06-21 16:49:04,590:INFO: setuptools: 67.8.0
  34. 2023-06-21 16:49:04,590:INFO: pycaret: 3.0.2
  35. 2023-06-21 16:49:04,590:INFO: IPython: 8.14.0
  36. 2023-06-21 16:49:04,590:INFO: ipywidgets: 7.7.5
  37. 2023-06-21 16:49:04,590:INFO: tqdm: 4.65.0
  38. 2023-06-21 16:49:04,590:INFO: numpy: 1.23.0
  39. 2023-06-21 16:49:04,590:INFO: pandas: 1.5.3
  40. 2023-06-21 16:49:04,590:INFO: jinja2: 3.1.2
  41. 2023-06-21 16:49:04,590:INFO: scipy: 1.10.1
  42. 2023-06-21 16:49:04,590:INFO: joblib: 1.2.0
  43. 2023-06-21 16:49:04,590:INFO: sklearn: 1.2.2
  44. 2023-06-21 16:49:04,590:INFO: pyod: 1.0.9
  45. 2023-06-21 16:49:04,590:INFO: imblearn: 0.10.1
  46. 2023-06-21 16:49:04,590:INFO: category_encoders: 2.6.1
  47. 2023-06-21 16:49:04,590:INFO: lightgbm: 3.3.5
  48. 2023-06-21 16:49:04,590:INFO: numba: 0.57.0
  49. 2023-06-21 16:49:04,590:INFO: requests: 2.31.0
  50. 2023-06-21 16:49:04,590:INFO: matplotlib: 3.7.1
  51. 2023-06-21 16:49:04,590:INFO: scikitplot: 0.3.7
  52. 2023-06-21 16:49:04,590:INFO: yellowbrick: 1.5
  53. 2023-06-21 16:49:04,590:INFO: plotly: 5.15.0
  54. 2023-06-21 16:49:04,590:INFO: kaleido: 0.2.1
  55. 2023-06-21 16:49:04,590:INFO: statsmodels: 0.14.0
  56. 2023-06-21 16:49:04,590:INFO: sktime: 0.17.0
  57. 2023-06-21 16:49:04,590:INFO: tbats: 1.1.3
  58. 2023-06-21 16:49:04,590:INFO: pmdarima: 2.0.3
  59. 2023-06-21 16:49:04,590:INFO: psutil: 5.9.5
  60. 2023-06-21 16:49:04,590:INFO:PyCaret optional dependencies:
  61. 2023-06-21 16:49:05,146:INFO: shap: 0.41.0
  62. 2023-06-21 16:49:05,146:INFO: interpret: Not installed
  63. 2023-06-21 16:49:05,146:INFO: umap: Not installed
  64. 2023-06-21 16:49:05,146:INFO: pandas_profiling: 3.6.6
  65. 2023-06-21 16:49:05,146:INFO: explainerdashboard: 0.4.2.2
  66. 2023-06-21 16:49:05,146:INFO: autoviz: Not installed
  67. 2023-06-21 16:49:05,146:INFO: fairlearn: Not installed
  68. 2023-06-21 16:49:05,146:INFO: xgboost: Not installed
  69. 2023-06-21 16:49:05,146:INFO: catboost: Not installed
  70. 2023-06-21 16:49:05,146:INFO: kmodes: Not installed
  71. 2023-06-21 16:49:05,146:INFO: mlxtend: Not installed
  72. 2023-06-21 16:49:05,146:INFO: statsforecast: Not installed
  73. 2023-06-21 16:49:05,146:INFO: tune_sklearn: Not installed
  74. 2023-06-21 16:49:05,146:INFO: ray: Not installed
  75. 2023-06-21 16:49:05,146:INFO: hyperopt: Not installed
  76. 2023-06-21 16:49:05,146:INFO: optuna: Not installed
  77. 2023-06-21 16:49:05,146:INFO: skopt: Not installed
  78. 2023-06-21 16:49:05,146:INFO: mlflow: 2.4.1
  79. 2023-06-21 16:49:05,146:INFO: gradio: 3.35.2
  80. 2023-06-21 16:49:05,146:INFO: fastapi: 0.97.0
  81. 2023-06-21 16:49:05,146:INFO: uvicorn: 0.22.0
  82. 2023-06-21 16:49:05,146:INFO: m2cgen: Not installed
  83. 2023-06-21 16:49:05,146:INFO: evidently: Not installed
  84. 2023-06-21 16:49:05,146:INFO: fugue: Not installed
  85. 2023-06-21 16:49:05,146:INFO: streamlit: Not installed
  86. 2023-06-21 16:49:05,146:INFO: prophet: Not installed
  87. 2023-06-21 16:49:05,146:INFO:None
  88. 2023-06-21 16:49:05,146:INFO:Set up data.
  89. 2023-06-21 16:49:05,151:INFO:Set up train/test split.
  90. 2023-06-21 16:49:05,154:INFO:Set up index.
  91. 2023-06-21 16:49:05,155:INFO:Set up folding strategy.
  92. 2023-06-21 16:49:05,155:INFO:Assigning column types.
  93. 2023-06-21 16:49:05,156:INFO:Engine successfully changes for model 'lr' to 'sklearn'.
  94. 2023-06-21 16:49:05,156:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
  95. 2023-06-21 16:49:05,158:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
  96. 2023-06-21 16:49:05,159:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
  97. 2023-06-21 16:49:05,182:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  98. 2023-06-21 16:49:05,200:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  99. 2023-06-21 16:49:05,200:WARNING:
  100. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  101. Alternately, you can install this by running `pip install pycaret[models]`
  102. 2023-06-21 16:49:05,231:WARNING:
  103. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  104. Alternately, you can install this by running `pip install pycaret[models]`
  105. 2023-06-21 16:49:05,231:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
  106. 2023-06-21 16:49:05,233:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
  107. 2023-06-21 16:49:05,235:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
  108. 2023-06-21 16:49:05,258:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  109. 2023-06-21 16:49:05,275:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  110. 2023-06-21 16:49:05,275:WARNING:
  111. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  112. Alternately, you can install this by running `pip install pycaret[models]`
  113. 2023-06-21 16:49:05,275:WARNING:
  114. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  115. Alternately, you can install this by running `pip install pycaret[models]`
  116. 2023-06-21 16:49:05,275:INFO:Engine successfully changes for model 'lasso' to 'sklearn'.
  117. 2023-06-21 16:49:05,277:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
  118. 2023-06-21 16:49:05,279:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
  119. 2023-06-21 16:49:05,302:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  120. 2023-06-21 16:49:05,338:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  121. 2023-06-21 16:49:05,339:WARNING:
  122. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  123. Alternately, you can install this by running `pip install pycaret[models]`
  124. 2023-06-21 16:49:05,339:WARNING:
  125. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  126. Alternately, you can install this by running `pip install pycaret[models]`
  127. 2023-06-21 16:49:05,341:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
  128. 2023-06-21 16:49:05,343:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
  129. 2023-06-21 16:49:05,382:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  130. 2023-06-21 16:49:05,416:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  131. 2023-06-21 16:49:05,417:WARNING:
  132. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  133. Alternately, you can install this by running `pip install pycaret[models]`
  134. 2023-06-21 16:49:05,417:WARNING:
  135. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  136. Alternately, you can install this by running `pip install pycaret[models]`
  137. 2023-06-21 16:49:05,417:INFO:Engine successfully changes for model 'ridge' to 'sklearn'.
  138. 2023-06-21 16:49:05,420:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
  139. 2023-06-21 16:49:05,443:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  140. 2023-06-21 16:49:05,461:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  141. 2023-06-21 16:49:05,461:WARNING:
  142. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  143. Alternately, you can install this by running `pip install pycaret[models]`
  144. 2023-06-21 16:49:05,461:WARNING:
  145. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  146. Alternately, you can install this by running `pip install pycaret[models]`
  147. 2023-06-21 16:49:05,464:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
  148. 2023-06-21 16:49:05,487:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  149. 2023-06-21 16:49:05,506:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  150. 2023-06-21 16:49:05,506:WARNING:
  151. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  152. Alternately, you can install this by running `pip install pycaret[models]`
  153. 2023-06-21 16:49:05,506:WARNING:
  154. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  155. Alternately, you can install this by running `pip install pycaret[models]`
  156. 2023-06-21 16:49:05,507:INFO:Engine successfully changes for model 'en' to 'sklearn'.
  157. 2023-06-21 16:49:05,534:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  158. 2023-06-21 16:49:05,552:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  159. 2023-06-21 16:49:05,552:WARNING:
  160. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  161. Alternately, you can install this by running `pip install pycaret[models]`
  162. 2023-06-21 16:49:05,552:WARNING:
  163. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  164. Alternately, you can install this by running `pip install pycaret[models]`
  165. 2023-06-21 16:49:05,579:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  166. 2023-06-21 16:49:05,597:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  167. 2023-06-21 16:49:05,597:WARNING:
  168. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  169. Alternately, you can install this by running `pip install pycaret[models]`
  170. 2023-06-21 16:49:05,597:WARNING:
  171. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  172. Alternately, you can install this by running `pip install pycaret[models]`
  173. 2023-06-21 16:49:05,597:INFO:Engine successfully changes for model 'knn' to 'sklearn'.
  174. 2023-06-21 16:49:05,624:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  175. 2023-06-21 16:49:05,641:WARNING:
  176. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  177. Alternately, you can install this by running `pip install pycaret[models]`
  178. 2023-06-21 16:49:05,642:WARNING:
  179. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  180. Alternately, you can install this by running `pip install pycaret[models]`
  181. 2023-06-21 16:49:05,667:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
  182. 2023-06-21 16:49:05,685:WARNING:
  183. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  184. Alternately, you can install this by running `pip install pycaret[models]`
  185. 2023-06-21 16:49:05,685:WARNING:
  186. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  187. Alternately, you can install this by running `pip install pycaret[models]`
  188. 2023-06-21 16:49:05,685:INFO:Engine successfully changes for model 'svm' to 'sklearn'.
  189. 2023-06-21 16:49:05,729:WARNING:
  190. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  191. Alternately, you can install this by running `pip install pycaret[models]`
  192. 2023-06-21 16:49:05,729:WARNING:
  193. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  194. Alternately, you can install this by running `pip install pycaret[models]`
  195. 2023-06-21 16:49:05,773:WARNING:
  196. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  197. Alternately, you can install this by running `pip install pycaret[models]`
  198. 2023-06-21 16:49:05,773:WARNING:
  199. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  200. Alternately, you can install this by running `pip install pycaret[models]`
  201. 2023-06-21 16:49:05,775:INFO:Preparing preprocessing pipeline...
  202. 2023-06-21 16:49:05,775:INFO:Set up target transformation.
  203. 2023-06-21 16:49:05,775:INFO:Set up simple imputation.
  204. 2023-06-21 16:49:05,777:INFO:Set up encoding of ordinal features.
  205. 2023-06-21 16:49:05,777:INFO:Set up encoding of categorical features.
  206. 2023-06-21 16:49:05,777:INFO:Set up column name cleaning.
  207. 2023-06-21 16:49:05,848:INFO:Finished creating preprocessing pipeline.
  208. 2023-06-21 16:49:05,857:INFO:Pipeline: Pipeline(memory=FastMemory(location=/var/folders/4p/4dsrcqhn1xzdbvntydthbzkc0000gn/T/joblib),
  209. steps=[('target_transformation',
  210. TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
  211. ('numerical_imputer',
  212. TransformerWrapper(include=['Carat Weight'],
  213. transformer=SimpleImputer())),
  214. ('categorical_imputer'...
  215. 'data_type': dtype('O'),
  216. 'mapping': AGSL 0
  217. GIA 1
  218. NaN -1
  219. dtype: int64}]))),
  220. ('onehot_encoding',
  221. TransformerWrapper(include=['Cut', 'Color', 'Clarity',
  222. 'Polish', 'Symmetry'],
  223. transformer=OneHotEncoder(cols=['Cut',
  224. 'Color',
  225. 'Clarity',
  226. 'Polish',
  227. 'Symmetry'],
  228. handle_missing='return_nan',
  229. use_cat_names=True))),
  230. ('clean_column_names',
  231. TransformerWrapper(transformer=CleanColumnNames()))])
  232. 2023-06-21 16:49:05,857:INFO:Creating final display dataframe.
  233. 2023-06-21 16:49:05,994:INFO:Setup _display_container: Description Value
  234. 0 Session id 3196
  235. 1 Target Price
  236. 2 Target type Regression
  237. 3 Original data shape (6000, 8)
  238. 4 Transformed data shape (6000, 29)
  239. 5 Transformed train set shape (4200, 29)
  240. 6 Transformed test set shape (1800, 29)
  241. 7 Ordinal features 1
  242. 8 Numeric features 1
  243. 9 Categorical features 6
  244. 10 Preprocess True
  245. 11 Imputation type simple
  246. 12 Numeric imputation mean
  247. 13 Categorical imputation mode
  248. 14 Maximum one-hot encoding 25
  249. 15 Encoding method None
  250. 16 Transform target True
  251. 17 Transform target method yeo-johnson
  252. 18 Fold Generator KFold
  253. 19 Fold Number 10
  254. 20 CPU Jobs -1
  255. 21 Use GPU False
  256. 22 Log Experiment MlflowLogger
  257. 23 Experiment Name diamond
  258. 24 USI 70d6
  259. 2023-06-21 16:49:06,044:WARNING:
  260. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  261. Alternately, you can install this by running `pip install pycaret[models]`
  262. 2023-06-21 16:49:06,044:WARNING:
  263. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  264. Alternately, you can install this by running `pip install pycaret[models]`
  265. 2023-06-21 16:49:06,089:WARNING:
  266. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  267. Alternately, you can install this by running `pip install pycaret[models]`
  268. 2023-06-21 16:49:06,089:WARNING:
  269. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  270. Alternately, you can install this by running `pip install pycaret[models]`
  271. 2023-06-21 16:49:06,089:INFO:Logging experiment in loggers
  272. 2023-06-21 16:49:06,125:INFO:SubProcess save_model() called ==================================
  273. 2023-06-21 16:49:06,144:INFO:Initializing save_model()
  274. 2023-06-21 16:49:06,144:INFO:save_model(model=Pipeline(memory=FastMemory(location=/var/folders/4p/4dsrcqhn1xzdbvntydthbzkc0000gn/T/joblib),
  275. steps=[('target_transformation',
  276. TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
  277. ('numerical_imputer',
  278. TransformerWrapper(include=['Carat Weight'],
  279. transformer=SimpleImputer())),
  280. ('categorical_imputer'...
  281. 'data_type': dtype('O'),
  282. 'mapping': AGSL 0
  283. GIA 1
  284. NaN -1
  285. dtype: int64}]))),
  286. ('onehot_encoding',
  287. TransformerWrapper(include=['Cut', 'Color', 'Clarity',
  288. 'Polish', 'Symmetry'],
  289. transformer=OneHotEncoder(cols=['Cut',
  290. 'Color',
  291. 'Clarity',
  292. 'Polish',
  293. 'Symmetry'],
  294. handle_missing='return_nan',
  295. use_cat_names=True))),
  296. ('clean_column_names',
  297. TransformerWrapper(transformer=CleanColumnNames()))]), model_name=/var/folders/4p/4dsrcqhn1xzdbvntydthbzkc0000gn/T/tmp0vpbgzem/Transformation Pipeline, prep_pipe_=Pipeline(memory=FastMemory(location=/var/folders/4p/4dsrcqhn1xzdbvntydthbzkc0000gn/T/joblib),
  298. steps=[('target_transformation',
  299. TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
  300. ('numerical_imputer',
  301. TransformerWrapper(include=['Carat Weight'],
  302. transformer=SimpleImputer())),
  303. ('categorical_imputer'...
  304. 'data_type': dtype('O'),
  305. 'mapping': AGSL 0
  306. GIA 1
  307. NaN -1
  308. dtype: int64}]))),
  309. ('onehot_encoding',
  310. TransformerWrapper(include=['Cut', 'Color', 'Clarity',
  311. 'Polish', 'Symmetry'],
  312. transformer=OneHotEncoder(cols=['Cut',
  313. 'Color',
  314. 'Clarity',
  315. 'Polish',
  316. 'Symmetry'],
  317. handle_missing='return_nan',
  318. use_cat_names=True))),
  319. ('clean_column_names',
  320. TransformerWrapper(transformer=CleanColumnNames()))]), verbose=False, use_case=MLUsecase.REGRESSION, kwargs={})
  321. 2023-06-21 16:49:06,144:INFO:Adding model into prep_pipe
  322. 2023-06-21 16:49:06,144:WARNING:Only Model saved as it was a pipeline.
  323. 2023-06-21 16:49:06,148:INFO:/var/folders/4p/4dsrcqhn1xzdbvntydthbzkc0000gn/T/tmp0vpbgzem/Transformation Pipeline.pkl saved in current working directory
  324. 2023-06-21 16:49:06,157:INFO:Pipeline(memory=FastMemory(location=/var/folders/4p/4dsrcqhn1xzdbvntydthbzkc0000gn/T/joblib),
  325. steps=[('target_transformation',
  326. TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
  327. ('numerical_imputer',
  328. TransformerWrapper(include=['Carat Weight'],
  329. transformer=SimpleImputer())),
  330. ('categorical_imputer'...
  331. 'data_type': dtype('O'),
  332. 'mapping': AGSL 0
  333. GIA 1
  334. NaN -1
  335. dtype: int64}]))),
  336. ('onehot_encoding',
  337. TransformerWrapper(include=['Cut', 'Color', 'Clarity',
  338. 'Polish', 'Symmetry'],
  339. transformer=OneHotEncoder(cols=['Cut',
  340. 'Color',
  341. 'Clarity',
  342. 'Polish',
  343. 'Symmetry'],
  344. handle_missing='return_nan',
  345. use_cat_names=True))),
  346. ('clean_column_names',
  347. TransformerWrapper(transformer=CleanColumnNames()))])
  348. 2023-06-21 16:49:06,157:INFO:save_model() successfully completed......................................
  349. 2023-06-21 16:49:06,226:INFO:SubProcess save_model() end ==================================
  350. 2023-06-21 16:49:06,229:INFO:setup() successfully completed in 1.54s...............
  351. 2023-06-21 16:49:06,232:INFO:Initializing create_model()
  352. 2023-06-21 16:49:06,233:INFO:create_model(self=<pycaret.regression.oop.RegressionExperiment object at 0x284457010>, estimator=lightgbm, fold=None, round=4, cross_validation=True, predict=True, fit_kwargs=None, groups=None, refit=True, probability_threshold=None, experiment_custom_tags=None, verbose=True, system=True, add_to_model_list=True, metrics=None, display=None, model_only=True, return_train_score=False, kwargs={})
  353. 2023-06-21 16:49:06,233:INFO:Checking exceptions
  354. 2023-06-21 16:49:06,277:INFO:Importing libraries
  355. 2023-06-21 16:49:06,278:INFO:Copying training dataset
  356. 2023-06-21 16:49:06,283:INFO:Defining folds
  357. 2023-06-21 16:49:06,283:INFO:Declaring metric variables
  358. 2023-06-21 16:49:06,285:INFO:Importing untrained model
  359. 2023-06-21 16:49:06,287:INFO:Light Gradient Boosting Machine Imported successfully
  360. 2023-06-21 16:49:06,290:INFO:Starting cross validation
  361. 2023-06-21 16:49:06,295:INFO:Cross validating with KFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  362. 2023-06-21 16:49:08,096:INFO:Calculating mean and std
  363. 2023-06-21 16:49:08,098:INFO:Creating metrics dataframe
  364. 2023-06-21 16:49:08,103:INFO:Finalizing model
  365. 2023-06-21 16:49:08,445:INFO:Creating Dashboard logs
  366. 2023-06-21 16:49:08,447:INFO:Model: Light Gradient Boosting Machine
  367. 2023-06-21 16:49:08,455:INFO:Logged params: {'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 31, 'objective': None, 'random_state': 3196, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0}
  368. 2023-06-21 16:49:08,478:INFO:Initializing predict_model()
  369. 2023-06-21 16:49:08,478:INFO:predict_model(self=<pycaret.regression.oop.RegressionExperiment object at 0x284457010>, estimator=LGBMRegressor(random_state=3196), probability_threshold=None, encoded_labels=False, raw_score=False, round=4, verbose=False, ml_usecase=None, preprocess=True, encode_labels=<function _SupervisedExperiment.predict_model.<locals>.encode_labels at 0x28ead1ea0>)
  370. 2023-06-21 16:49:08,478:INFO:Checking exceptions
  371. 2023-06-21 16:49:08,478:INFO:Preloading libraries
  372. 2023-06-21 16:49:08,641:WARNING:/Users/vu/Downloads/mlops/dagshub_project/.venv/lib/python3.10/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
  373. warnings.warn("Setuptools is replacing distutils.")
  374. 2023-06-21 16:49:08,735:INFO:Uploading results into container
  375. 2023-06-21 16:49:08,735:INFO:Uploading model into container now
  376. 2023-06-21 16:49:08,739:INFO:_master_model_container: 1
  377. 2023-06-21 16:49:08,739:INFO:_display_container: 2
  378. 2023-06-21 16:49:08,739:INFO:LGBMRegressor(random_state=3196)
  379. 2023-06-21 16:49:08,739:INFO:create_model() successfully completed......................................
  380. 2023-06-21 16:49:08,812:INFO:Soft dependency imported: fastapi: 0.97.0
  381. 2023-06-21 16:49:08,812:INFO:Soft dependency imported: uvicorn: 0.22.0
  382. 2023-06-21 16:49:08,812:INFO:Soft dependency imported: pydantic: 1.10.9
  383. 2023-06-21 16:49:08,822:INFO:Initializing save_model()
  384. 2023-06-21 16:49:08,822:INFO:save_model(model=LGBMRegressor(random_state=3196), model_name=diamond_predict_api, prep_pipe_=Pipeline(memory=FastMemory(location=/var/folders/4p/4dsrcqhn1xzdbvntydthbzkc0000gn/T/joblib),
  385. steps=[('target_transformation',
  386. TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
  387. ('numerical_imputer',
  388. TransformerWrapper(include=['Carat Weight'],
  389. transformer=SimpleImputer())),
  390. ('categorical_imputer'...
  391. 'data_type': dtype('O'),
  392. 'mapping': AGSL 0
  393. GIA 1
  394. NaN -1
  395. dtype: int64}]))),
  396. ('onehot_encoding',
  397. TransformerWrapper(include=['Cut', 'Color', 'Clarity',
  398. 'Polish', 'Symmetry'],
  399. transformer=OneHotEncoder(cols=['Cut',
  400. 'Color',
  401. 'Clarity',
  402. 'Polish',
  403. 'Symmetry'],
  404. handle_missing='return_nan',
  405. use_cat_names=True))),
  406. ('clean_column_names',
  407. TransformerWrapper(transformer=CleanColumnNames()))]), verbose=False, use_case=MLUsecase.REGRESSION, kwargs={})
  408. 2023-06-21 16:49:08,822:INFO:Adding model into prep_pipe
  409. 2023-06-21 16:49:08,831:INFO:diamond_predict_api.pkl saved in current working directory
  410. 2023-06-21 16:49:08,840:INFO:Pipeline(memory=FastMemory(location=/var/folders/4p/4dsrcqhn1xzdbvntydthbzkc0000gn/T/joblib),
  411. steps=[('target_transformation',
  412. TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
  413. ('numerical_imputer',
  414. TransformerWrapper(include=['Carat Weight'],
  415. transformer=SimpleImputer())),
  416. ('categorical_imputer'...
  417. dtype: int64}]))),
  418. ('onehot_encoding',
  419. TransformerWrapper(include=['Cut', 'Color', 'Clarity',
  420. 'Polish', 'Symmetry'],
  421. transformer=OneHotEncoder(cols=['Cut',
  422. 'Color',
  423. 'Clarity',
  424. 'Polish',
  425. 'Symmetry'],
  426. handle_missing='return_nan',
  427. use_cat_names=True))),
  428. ('clean_column_names',
  429. TransformerWrapper(transformer=CleanColumnNames())),
  430. ('trained_model', LGBMRegressor(random_state=3196))])
  431. 2023-06-21 16:49:08,840:INFO:save_model() successfully completed......................................
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...