1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
- """
- This is the fourth ablation study, removing the maximum entropy factor during training
- """
- import numpy as np
- import pandas as pd
- import tensorflow as tf
- from keras.layers import Dense
- from sklearn.preprocessing import MinMaxScaler
- import dagshub
- import mlflow
- import mlflow.keras
- import pickle
- mlflow.set_tracking_uri('https://dagshub.com/ML-Purdue/hackathonf23-Stacks.mlflow')
- dagshub.init(repo_owner='ML-Purdue', repo_name='hackathonf23-Stacks', mlflow=True)
- def get_or_create_experiment_id(name):
- exp = mlflow.get_experiment_by_name(name)
- if exp is None:
- exp_id = mlflow.create_experiment(name)
- return exp_id
- return exp.experiment_id
- class IRL:
- def __init__(self, state_dim):
- self.state_dim = state_dim
- self.model = self._create_irl_model()
- def _create_irl_model(self):
- model = tf.keras.Sequential([
- Dense(self.state_dim, input_shape=(self.state_dim,), activation='relu'),
- Dense(4096, activation='relu'),
- Dense(2048, activation='relu'),
- Dense(self.state_dim, activation='linear')
- ])
- return model
- def generateHumanTrajectories(self, num_trajectories, trajectory_length):
- human_trajectories = []
- for _ in range(num_trajectories):
- trajectory = []
- state = np.zeros(self.state_dim)
- for _ in range(trajectory_length):
- direction_probabilities = self._generate_direction_probabilities()
- action_coefficients = np.random.choice([-1, 0, 1], p=direction_probabilities)
- action = action_coefficients * 0.1
- new_state = state + action
- trajectory.append((state, action))
- state = new_state
- human_trajectories.append(trajectory)
- return human_trajectories
- def _generate_direction_probabilities(self):
- probabilities = np.random.dirichlet(np.ones(self.state_dim) * 0.1)
- return probabilities
- def loadDataset(self, file_path):
- data = pd.read_csv(file_path)
- scaler = MinMaxScaler()
- columns_to_normalize = ['position x [mm]', 'position y [mm]', 'position z (height) [mm]', 'velocity [mm/s]']
- data[columns_to_normalize] = scaler.fit_transform(data[columns_to_normalize])
- return data
- def train_irl_with_dataset(self, data, lr=0.001, epochs=3):
- state_dim = self.state_dim
- optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
- positions = data[['position x [mm]', 'position y [mm]', 'position z (height) [mm]']].values
- velocities = data['velocity [mm/s]'].values
- mlflow.tensorflow.autolog()
- with mlflow.start_run(experiment_id=get_or_create_experiment_id("Ablation Study 4: Removed Maximum Entropy Component")):
- for epoch in range(epochs):
- total_loss = 0
- for idx in range(len(positions)):
- state = positions[idx]
- velocity = velocities[idx] # Define velocity here
- with tf.GradientTape() as tape:
- preferences = self.model(state[np.newaxis, :])
- specific_loss = tf.reduce_mean(tf.square(preferences - velocity)) # Calculate Mean Squared Error
- grads = tape.gradient(specific_loss, self.model.trainable_variables)
- optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
- total_loss += specific_loss
- avg_loss = total_loss / len(positions)
- mlflow.log_metric(f"loss", avg_loss, step=epoch)
- print(f"Epoch {epoch + 1}/{epochs}, Loss (MSE): {avg_loss}")
- def train_irl(self, human_trajectories=None, data=None, use_dataset=False, lr=0.001, epochs=3):
- if use_dataset and data is not None:
- self.train_irl_with_dataset(data, lr=lr, epochs=epochs)
- else:
- if human_trajectories is None:
- human_trajectories = self.generateHumanTrajectories(num_trajectories, trajectory_length)
- self._train_irl_generative(human_trajectories, lr=lr, epochs=epochs)
- def _train_irl_generative(self, human_trajectories, lr=0.001, epochs=3):
- trajectory_length = len(human_trajectories[0])
- optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
- for epoch in range(epochs):
- total_loss = 0
- for trajectory in human_trajectories:
- for state, velocity in trajectory: # Define velocity from the trajectory
- with tf.GradientTape() as tape:
- preferences = self.model(state[np.newaxis, :])
- specific_loss = tf.reduce_mean(tf.square(preferences - velocity)) # Calculate Mean Squared Error
- grads = tape.gradient(specific_loss, self.model.trainable_variables)
- optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
- total_loss += specific_loss
- avg_loss = total_loss / (len(human_trajectories) * trajectory_length)
- print(f"Epoch {epoch + 1}/{epochs}, Loss (MSE): {avg_loss}")
- def _calculate_state_frequencies(self, positions):
- state_counts = np.sum(positions, axis=0)
- state_frequencies = state_counts / (len(positions) * self.state_dim)
- return state_frequencies
- def save_model(self, file_path):
- model_config = self.model.get_config()
- with open(file_path, 'wb') as f:
- pickle.dump(model_config, f)
- @classmethod
- def load_model(cls, file_path, state_dim):
- with open(file_path, 'rb') as f:
- model_config = pickle.load(f)
- irl_instance = cls(state_dim)
- irl_instance.model = tf.keras.Sequential.from_config(model_config)
- return irl_instance
- # Indicate test completion status
-
- state_dim = 3 # Dimension of the state space
- irl = IRL(state_dim)
- num_trajectories = 100
- trajectory_length = 20
- # Load the dataset
- file_path = '/Users/vinay/Desktop/Computer_Science_Projects/ReScience/hackathonf23-Stacks/data/train.csv' # Replace with the actual file path
- data = irl.loadDataset(file_path)
- irl.train_irl(data=data, use_dataset=True, lr=0.001, epochs=3)
- irl.save_model('/Users/vinay/Desktop/Computer_Science_Projects/ReScience/hackathonf23-Stacks/models/rmv_max_entropy_model.pkl')
|