Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

minotaur-ds.yml 6.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
  1. task: 39
  2. runpod:
  3. entry: |
  4. bash -c "curl -H 'Cache-Control: no-cache' https://raw.githubusercontent.com/utensil/llm-playground/main/scripts/entry/ax_lite_train.sh -sSf | bash"
  5. axolotl_git: https://github.com/utensil/axolotl
  6. axolotl_git_branch: large_dataset
  7. # "NVIDIA RTX A5000" # "NVIDIA RTX A6000" "NVIDIA GeForce RTX 4090" "NVIDIA RTX 6000 Ada Generation" "NVIDIA A100-SXM4-80GB" "NVIDIA A100 80GB PCIe"
  8. gpu: "NVIDIA A100 80GB PCIe"
  9. # pod_type: INTERRUPTABLE
  10. cloud_type: "SECURE" # "ALL" "COMMUNITY" "SECURE"
  11. max_bid_per_gpu: 2.0
  12. # template_id: 758uq6u5fc
  13. gpu_count: 1
  14. container_disk_in_gb: 50
  15. volume_in_gb: 200
  16. min_vcpu_count: 8
  17. min_memory_in_gb: 29
  18. # min_download: 2000
  19. # min_upload: 1500
  20. stop_after: 3600
  21. terminate_after: -1
  22. debug: false
  23. # Set to false to stay running after training
  24. one_shot: true
  25. log_eval: true
  26. prepare_ds_only: true
  27. env:
  28. TEST_ENV: happy
  29. # deepspeed: true
  30. base_model: openaccess-ai-collective/minotaur-7b
  31. base_model_config: openaccess-ai-collective/minotaur-7b
  32. model_type: LlamaForCausalLM
  33. load_in_8bit: false
  34. # enable 4bit for QLoRA
  35. load_in_4bit: true
  36. gptq: false
  37. strict: false
  38. push_dataset_to_hub: utensil
  39. hub_model_id: minotaur-7b-orca
  40. hf_use_auth_token: true
  41. datasets:
  42. # - path: Open-Orca/OpenOrca
  43. # type: alpaca_w_system.load_open_orca
  44. # data_files:
  45. # - 1M-GPT4-Augmented.parquet
  46. - path: ehartford/dolphin
  47. data_files:
  48. - flan1m-alpaca-uncensored.jsonl
  49. type: alpaca
  50. # - path: QingyiSi/Alpaca-CoT
  51. # data_files:
  52. # - Chain-of-Thought/formatted_cot_data/gsm8k_train.json
  53. # type: alpaca:chat
  54. # - path: winglian/evals
  55. # data_files:
  56. # - hf/ARC-Challenge.jsonl
  57. # - hf/ARC-Easy.jsonl
  58. # - hf/riddle_sense.jsonl
  59. # type: explainchoice:chat
  60. # - path: winglian/evals
  61. # data_files:
  62. # - hf/gsm8k.jsonl
  63. # - hf/winogrande.jsonl
  64. # type: alpaca_chat.load_qa
  65. # - path: winglian/evals
  66. # data_files:
  67. # - custom/n_task.jsonl
  68. # - custom/misconceptions.jsonl
  69. # - custom/context_insensitivity.jsonl
  70. # type: alpaca_chat
  71. # - path: camel-ai/math
  72. # type: alpaca_chat.load_camel_ai
  73. # - path: camel-ai/biology
  74. # type: alpaca_chat.load_camel_ai
  75. # - path: camel-ai/physics
  76. # type: alpaca_chat.load_camel_ai
  77. # - path: camel-ai/chemistry
  78. # type: alpaca_chat.load_camel_ai
  79. # - path: winglian/evals
  80. # data_files:
  81. # - custom/in_context_qa.jsonl
  82. # type: context_qa
  83. # - path: winglian/evals
  84. # data_files:
  85. # - custom/in_context_qa.jsonl
  86. # type: context_qa.load_404
  87. # - path: winglian/evals
  88. # data_files:
  89. # - custom/jokes_explained_500up.jsonl
  90. # type: sharegpt_jokes
  91. # - path: winglian/evals
  92. # data_files:
  93. # - custom/classify-self-chat.sharegpt.jsonl
  94. # - custom/coding-self-chat.sharegpt.jsonl
  95. # - custom/prose-gpt4.sharegpt.jsonl
  96. # - custom/prose-rewrite-gpt4.sharegpt.jsonl
  97. # type: sharegpt_simple.load_role
  98. # - path: winglian/evals
  99. # data_files:
  100. # - openai/tldr.jsonl
  101. # type: summarizetldr:chat
  102. # - path: winglian/evals
  103. # data_files:
  104. # - hellaswag/hellaswag.jsonl
  105. # type: explainchoice:chat
  106. # - path: metaeval/ScienceQA_text_only
  107. # type: concisechoice:chat
  108. # - path: teknium/GPT4-LLM-Cleaned
  109. # type: alpaca_chat
  110. # - path: teknium/GPTeacher-General-Instruct
  111. # data_files: gpt4-instruct-similarity-0.6-dataset.json
  112. # type: gpteacher:chat
  113. # - path: QingyiSi/Alpaca-CoT
  114. # data_files:
  115. # - Chain-of-Thought/formatted_cot_data/aqua_train.json
  116. # - Chain-of-Thought/formatted_cot_data/creak_train.json
  117. # - Chain-of-Thought/formatted_cot_data/ecqa_train.json
  118. # - Chain-of-Thought/formatted_cot_data/esnli_train.json
  119. # - Chain-of-Thought/formatted_cot_data/qasc_train.json
  120. # - Chain-of-Thought/formatted_cot_data/qed_train.json
  121. # - Chain-of-Thought/formatted_cot_data/sensemaking_train.json
  122. # - Chain-of-Thought/formatted_cot_data/strategyqa_train.json
  123. # - GPTeacher/Roleplay/formatted_roleplay-similarity_0.6-instruct-dataset.json
  124. # type: alpaca_chat
  125. # - path: ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
  126. # type: alpaca_chat
  127. # - path: ehartford/wizard_vicuna_70k_unfiltered
  128. # type: sharegpt:chat
  129. dataset_prepared_path: last_run_prepared
  130. val_set_size: 0.00003 # num_epochs * 0.01
  131. # enable QLoRA
  132. adapter: qlora
  133. lora_model_dir: ./qlora-out
  134. sequence_len: 2048
  135. max_packed_sequence_len: 2048
  136. # hyperparameters from QLoRA paper Appendix B.2
  137. # "We find hyperparameters to be largely robust across datasets"
  138. lora_r: 64
  139. lora_alpha: 16
  140. # 0.1 for models up to 13B
  141. # 0.05 for 33B and 65B models
  142. lora_dropout: 0.05
  143. # add LoRA modules on all linear layers of the base model
  144. lora_target_modules:
  145. lora_target_linear: true
  146. lora_fan_in_fan_out:
  147. wandb_project: axolotl-runner-test
  148. wandb_watch:
  149. wandb_run_id:
  150. wandb_log_model:
  151. # output_dir: /content/axolotl-trained/falcon-qlora-40b-minotaur/
  152. output_dir: ./qlora-out
  153. # QLoRA paper Table 9
  154. # - 16 for 7b & 13b
  155. # - 32 for 33b, 64 for 64b
  156. # Max size tested on A6000
  157. # - 7b: 40
  158. # - 40b: 4
  159. # decrease if OOM, increase for max VRAM utilization
  160. micro_batch_size: 4
  161. gradient_accumulation_steps: 1
  162. num_epochs: 0.003
  163. # Optimizer for QLoRA
  164. # optimizer: paged_adamw_32bit
  165. # optimizer: adamw_bnb_8bit
  166. # https://github.com/huggingface/transformers/pull/23217
  167. optimizer: paged_lion_8bit
  168. torchdistx_path:
  169. lr_scheduler: cosine
  170. # QLoRA paper Table 9
  171. # - 2e-4 for 7b & 13b
  172. # - 1e-4 for 33b & 64b
  173. learning_rate: 0.0002
  174. train_on_inputs: false
  175. group_by_length: false
  176. bf16: true
  177. fp16: false
  178. tf32: true
  179. gradient_checkpointing: true
  180. # stop training after this many evaluation losses have increased in a row
  181. # https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
  182. # early_stopping_patience: 3
  183. resume_from_checkpoint:
  184. auto_resume_from_checkpoints: true
  185. local_rank:
  186. logging_steps: 1
  187. # xformers_attention:
  188. # flash_attention:
  189. gptq_groupsize:
  190. gptq_model_v1:
  191. warmup_steps: 10
  192. eval_steps: 5
  193. save_steps: 10
  194. debug:
  195. # deepspeed:
  196. weight_decay: 0.01
  197. adam_beta1:
  198. adam_beta2: 0.999
  199. adam_epsilon:
  200. # Gradient clipping max norm
  201. max_grad_norm: 0.3
  202. fsdp:
  203. fsdp_config:
  204. special_tokens:
  205. bos_token: "<s>"
  206. eos_token: "</s>"
  207. unk_token: "<unk>"
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...