1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
- import multiprocessing
- import shutil
- from pathlib import Path
- import cv2
- import numpy as np
- from DFLIMG import *
- from facelib import FaceType, LandmarksProcessor
- from interact import interact as io
- from joblib import Subprocessor
- from utils import Path_utils
- from utils.cv2_utils import *
- from . import Extractor, Sorter
- from .Extractor import ExtractSubprocessor
- def extract_vggface2_dataset(input_dir, device_args={} ):
- multi_gpu = device_args.get('multi_gpu', False)
- cpu_only = device_args.get('cpu_only', False)
- input_path = Path(input_dir)
- if not input_path.exists():
- raise ValueError('Input directory not found. Please ensure it exists.')
-
- bb_csv = input_path / 'loose_bb_train.csv'
- if not bb_csv.exists():
- raise ValueError('loose_bb_train.csv found. Please ensure it exists.')
-
- bb_lines = bb_csv.read_text().split('\n')
- bb_lines.pop(0)
-
- bb_dict = {}
- for line in bb_lines:
- name, l, t, w, h = line.split(',')
- name = name[1:-1]
- l, t, w, h = [ int(x) for x in (l, t, w, h) ]
- bb_dict[name] = (l,t,w, h)
-
- output_path = input_path.parent / (input_path.name + '_out')
-
- dir_names = Path_utils.get_all_dir_names(input_path)
-
- if not output_path.exists():
- output_path.mkdir(parents=True, exist_ok=True)
- data = []
- for dir_name in io.progress_bar_generator(dir_names, "Collecting"):
- cur_input_path = input_path / dir_name
- cur_output_path = output_path / dir_name
-
- if not cur_output_path.exists():
- cur_output_path.mkdir(parents=True, exist_ok=True)
-
- input_path_image_paths = Path_utils.get_image_paths(cur_input_path)
- for filename in input_path_image_paths:
- filename_path = Path(filename)
-
- name = filename_path.parent.name + '/' + filename_path.stem
- if name not in bb_dict:
- continue
- l,t,w,h = bb_dict[name]
- if min(w,h) < 128:
- continue
-
- data += [ ExtractSubprocessor.Data(filename=filename,rects=[ (l,t,l+w,t+h) ], landmarks_accurate=False, force_output_path=cur_output_path ) ]
-
- face_type = FaceType.fromString('full_face')
-
- io.log_info ('Performing 2nd pass...')
- data = ExtractSubprocessor (data, 'landmarks', 256, face_type, debug_dir=None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).run()
-
- io.log_info ('Performing 3rd pass...')
- ExtractSubprocessor (data, 'final', 256, face_type, debug_dir=None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=None).run()
-
-
- """
- import code
- code.interact(local=dict(globals(), **locals()))
-
- data_len = len(data)
- i = 0
- while i < data_len-1:
- i_name = Path(data[i].filename).parent.name
-
- sub_data = []
-
- for j in range (i, data_len):
- j_name = Path(data[j].filename).parent.name
- if i_name == j_name:
- sub_data += [ data[j] ]
- else:
- break
- i = j
-
- cur_output_path = output_path / i_name
-
- io.log_info (f"Processing: {str(cur_output_path)}, {i}/{data_len} ")
-
- if not cur_output_path.exists():
- cur_output_path.mkdir(parents=True, exist_ok=True)
-
-
-
-
-
- for dir_name in dir_names:
-
- cur_input_path = input_path / dir_name
- cur_output_path = output_path / dir_name
-
- input_path_image_paths = Path_utils.get_image_paths(cur_input_path)
- l = len(input_path_image_paths)
- #if l < 250 or l > 350:
- # continue
- io.log_info (f"Processing: {str(cur_input_path)} ")
-
- if not cur_output_path.exists():
- cur_output_path.mkdir(parents=True, exist_ok=True)
- data = []
- for filename in input_path_image_paths:
- filename_path = Path(filename)
-
- name = filename_path.parent.name + '/' + filename_path.stem
- if name not in bb_dict:
- continue
-
- bb = bb_dict[name]
- l,t,w,h = bb
- if min(w,h) < 128:
- continue
-
- data += [ ExtractSubprocessor.Data(filename=filename,rects=[ (l,t,l+w,t+h) ], landmarks_accurate=False ) ]
-
-
-
- io.log_info ('Performing 2nd pass...')
- data = ExtractSubprocessor (data, 'landmarks', 256, face_type, debug_dir=None, multi_gpu=False, cpu_only=False, manual=False).run()
- io.log_info ('Performing 3rd pass...')
- data = ExtractSubprocessor (data, 'final', 256, face_type, debug_dir=None, multi_gpu=False, cpu_only=False, manual=False, final_output_path=cur_output_path).run()
-
-
- io.log_info (f"Sorting: {str(cur_output_path)} ")
- Sorter.main (input_path=str(cur_output_path), sort_by_method='hist')
-
- import code
- code.interact(local=dict(globals(), **locals()))
-
- #try:
- # io.log_info (f"Removing: {str(cur_input_path)} ")
- # shutil.rmtree(cur_input_path)
- #except:
- # io.log_info (f"unable to remove: {str(cur_input_path)} ")
-
-
-
- def extract_vggface2_dataset(input_dir, device_args={} ):
- multi_gpu = device_args.get('multi_gpu', False)
- cpu_only = device_args.get('cpu_only', False)
- input_path = Path(input_dir)
- if not input_path.exists():
- raise ValueError('Input directory not found. Please ensure it exists.')
-
- output_path = input_path.parent / (input_path.name + '_out')
-
- dir_names = Path_utils.get_all_dir_names(input_path)
-
- if not output_path.exists():
- output_path.mkdir(parents=True, exist_ok=True)
-
-
-
- for dir_name in dir_names:
-
- cur_input_path = input_path / dir_name
- cur_output_path = output_path / dir_name
-
- l = len(Path_utils.get_image_paths(cur_input_path))
- if l < 250 or l > 350:
- continue
- io.log_info (f"Processing: {str(cur_input_path)} ")
-
- if not cur_output_path.exists():
- cur_output_path.mkdir(parents=True, exist_ok=True)
- Extractor.main( str(cur_input_path),
- str(cur_output_path),
- detector='s3fd',
- image_size=256,
- face_type='full_face',
- max_faces_from_image=1,
- device_args=device_args )
-
- io.log_info (f"Sorting: {str(cur_input_path)} ")
- Sorter.main (input_path=str(cur_output_path), sort_by_method='hist')
-
- try:
- io.log_info (f"Removing: {str(cur_input_path)} ")
- shutil.rmtree(cur_input_path)
- except:
- io.log_info (f"unable to remove: {str(cur_input_path)} ")
-
- """
- class CelebAMASKHQSubprocessor(Subprocessor):
- class Cli(Subprocessor.Cli):
- #override
- def on_initialize(self, client_dict):
- self.masks_files_paths = client_dict['masks_files_paths']
- return None
- #override
- def process_data(self, data):
- filename = data[0]
- dflimg = DFLIMG.load(Path(filename))
-
- image_to_face_mat = dflimg.get_image_to_face_mat()
- src_filename = dflimg.get_source_filename()
- img = cv2_imread(filename)
- h,w,c = img.shape
-
- fanseg_mask = LandmarksProcessor.get_image_hull_mask(img.shape, dflimg.get_landmarks() )
-
- idx_name = '%.5d' % int(src_filename.split('.')[0])
- idx_files = [ x for x in self.masks_files_paths if idx_name in x ]
-
- skin_files = [ x for x in idx_files if 'skin' in x ]
- eye_glass_files = [ x for x in idx_files if 'eye_g' in x ]
-
- for files, is_invert in [ (skin_files,False),
- (eye_glass_files,True) ]:
- if len(files) > 0:
- mask = cv2_imread(files[0])
- mask = mask[...,0]
- mask[mask == 255] = 1
- mask = mask.astype(np.float32)
- mask = cv2.resize(mask, (1024,1024) )
- mask = cv2.warpAffine(mask, image_to_face_mat, (w, h), cv2.INTER_LANCZOS4)
-
- if not is_invert:
- fanseg_mask *= mask[...,None]
- else:
- fanseg_mask *= (1-mask[...,None])
- dflimg.embed_and_set (filename, fanseg_mask=fanseg_mask)
- return 1
- #override
- def get_data_name (self, data):
- #return string identificator of your data
- return data[0]
- #override
- def __init__(self, image_paths, masks_files_paths ):
- self.image_paths = image_paths
- self.masks_files_paths = masks_files_paths
-
- self.result = []
- super().__init__('CelebAMASKHQSubprocessor', CelebAMASKHQSubprocessor.Cli, 60)
- #override
- def process_info_generator(self):
- for i in range(min(multiprocessing.cpu_count(), 8)):
- yield 'CPU%d' % (i), {}, {'masks_files_paths' : self.masks_files_paths }
- #override
- def on_clients_initialized(self):
- io.progress_bar ("Processing", len (self.image_paths))
- #override
- def on_clients_finalized(self):
- io.progress_bar_close()
- #override
- def get_data(self, host_dict):
- if len (self.image_paths) > 0:
- return [self.image_paths.pop(0)]
- return None
- #override
- def on_data_return (self, host_dict, data):
- self.image_paths.insert(0, data[0])
- #override
- def on_result (self, host_dict, data, result):
- io.progress_bar_inc(1)
- #override
- def get_result(self):
- return self.result
-
- #unused in end user workflow
- def apply_celebamaskhq(input_dir ):
-
- input_path = Path(input_dir)
-
- img_path = input_path / 'aligned'
- mask_path = input_path / 'mask'
- if not img_path.exists():
- raise ValueError(f'{str(img_path)} directory not found. Please ensure it exists.')
- CelebAMASKHQSubprocessor(Path_utils.get_image_paths(img_path),
- Path_utils.get_image_paths(mask_path, subdirs=True) ).run()
-
- return
-
- paths_to_extract = []
- for filename in io.progress_bar_generator(Path_utils.get_image_paths(img_path), desc="Processing"):
- filepath = Path(filename)
- dflimg = DFLIMG.load(filepath)
- if dflimg is not None:
- paths_to_extract.append (filepath)
-
- image_to_face_mat = dflimg.get_image_to_face_mat()
- src_filename = dflimg.get_source_filename()
- #img = cv2_imread(filename)
- h,w,c = dflimg.get_shape()
-
- fanseg_mask = LandmarksProcessor.get_image_hull_mask( (h,w,c), dflimg.get_landmarks() )
-
- idx_name = '%.5d' % int(src_filename.split('.')[0])
- idx_files = [ x for x in masks_files if idx_name in x ]
-
- skin_files = [ x for x in idx_files if 'skin' in x ]
- eye_glass_files = [ x for x in idx_files if 'eye_g' in x ]
-
- for files, is_invert in [ (skin_files,False),
- (eye_glass_files,True) ]:
-
- if len(files) > 0:
- mask = cv2_imread(files[0])
- mask = mask[...,0]
- mask[mask == 255] = 1
- mask = mask.astype(np.float32)
- mask = cv2.resize(mask, (1024,1024) )
- mask = cv2.warpAffine(mask, image_to_face_mat, (w, h), cv2.INTER_LANCZOS4)
-
- if not is_invert:
- fanseg_mask *= mask[...,None]
- else:
- fanseg_mask *= (1-mask[...,None])
-
- #cv2.imshow("", (fanseg_mask*255).astype(np.uint8) )
- #cv2.waitKey(0)
-
-
- dflimg.embed_and_set (filename, fanseg_mask=fanseg_mask)
-
-
- #import code
- #code.interact(local=dict(globals(), **locals()))
- #unused in end user workflow
- def extract_fanseg(input_dir, device_args={} ):
- multi_gpu = device_args.get('multi_gpu', False)
- cpu_only = device_args.get('cpu_only', False)
-
- input_path = Path(input_dir)
- if not input_path.exists():
- raise ValueError('Input directory not found. Please ensure it exists.')
-
- paths_to_extract = []
- for filename in Path_utils.get_image_paths(input_path) :
- filepath = Path(filename)
- dflimg = DFLIMG.load ( filepath )
- if dflimg is not None:
- paths_to_extract.append (filepath)
-
- paths_to_extract_len = len(paths_to_extract)
- if paths_to_extract_len > 0:
- io.log_info ("Performing extract fanseg for %d files..." % (paths_to_extract_len) )
- data = ExtractSubprocessor ([ ExtractSubprocessor.Data(filename) for filename in paths_to_extract ], 'fanseg', multi_gpu=multi_gpu, cpu_only=cpu_only).run()
- #unused in end user workflow
- def extract_umd_csv(input_file_csv,
- image_size=256,
- face_type='full_face',
- device_args={} ):
-
- #extract faces from umdfaces.io dataset csv file with pitch,yaw,roll info.
- multi_gpu = device_args.get('multi_gpu', False)
- cpu_only = device_args.get('cpu_only', False)
- face_type = FaceType.fromString(face_type)
-
- input_file_csv_path = Path(input_file_csv)
- if not input_file_csv_path.exists():
- raise ValueError('input_file_csv not found. Please ensure it exists.')
-
- input_file_csv_root_path = input_file_csv_path.parent
- output_path = input_file_csv_path.parent / ('aligned_' + input_file_csv_path.name)
-
- io.log_info("Output dir is %s." % (str(output_path)) )
-
- if output_path.exists():
- output_images_paths = Path_utils.get_image_paths(output_path)
- if len(output_images_paths) > 0:
- io.input_bool("WARNING !!! \n %s contains files! \n They will be deleted. \n Press enter to continue." % (str(output_path)), False )
- for filename in output_images_paths:
- Path(filename).unlink()
- else:
- output_path.mkdir(parents=True, exist_ok=True)
-
- try:
- with open( str(input_file_csv_path), 'r') as f:
- csv_file = f.read()
- except Exception as e:
- io.log_err("Unable to open or read file " + str(input_file_csv_path) + ": " + str(e) )
- return
-
- strings = csv_file.split('\n')
- keys = strings[0].split(',')
- keys_len = len(keys)
- csv_data = []
- for i in range(1, len(strings)):
- values = strings[i].split(',')
- if keys_len != len(values):
- io.log_err("Wrong string in csv file, skipping.")
- continue
-
- csv_data += [ { keys[n] : values[n] for n in range(keys_len) } ]
-
- data = []
- for d in csv_data:
- filename = input_file_csv_root_path / d['FILE']
-
- #pitch, yaw, roll = float(d['PITCH']), float(d['YAW']), float(d['ROLL'])
- #if pitch < -90 or pitch > 90 or yaw < -90 or yaw > 90 or roll < -90 or roll > 90:
- # continue
- #
- #pitch_yaw_roll = pitch/90.0, yaw/90.0, roll/90.0
-
- x,y,w,h = float(d['FACE_X']), float(d['FACE_Y']), float(d['FACE_WIDTH']), float(d['FACE_HEIGHT'])
- data += [ ExtractSubprocessor.Data(filename=filename, rects=[ [x,y,x+w,y+h] ]) ]
-
- images_found = len(data)
- faces_detected = 0
- if len(data) > 0:
- io.log_info ("Performing 2nd pass from csv file...")
- data = ExtractSubprocessor (data, 'landmarks', multi_gpu=multi_gpu, cpu_only=cpu_only).run()
-
- io.log_info ('Performing 3rd pass...')
- data = ExtractSubprocessor (data, 'final', image_size, face_type, None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
- faces_detected += sum([d.faces_detected for d in data])
-
-
- io.log_info ('-------------------------')
- io.log_info ('Images found: %d' % (images_found) )
- io.log_info ('Faces detected: %d' % (faces_detected) )
- io.log_info ('-------------------------')
- def dev_test(input_dir):
- input_path = Path(input_dir)
-
- dir_names = Path_utils.get_all_dir_names(input_path)
-
- for dir_name in io.progress_bar_generator(dir_names, desc="Processing"):
-
- img_paths = Path_utils.get_image_paths (input_path / dir_name)
- for filename in img_paths:
- filepath = Path(filename)
-
- dflimg = DFLIMG.load (filepath)
- if dflimg is None:
- raise ValueError
-
- dflimg.embed_and_set(filename, person_name=dir_name)
-
- #import code
- #code.interact(local=dict(globals(), **locals()))
-
-
|