Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

Trainer.py 13 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
  1. import sys
  2. import traceback
  3. import queue
  4. import threading
  5. import time
  6. import numpy as np
  7. import itertools
  8. from pathlib import Path
  9. from utils import Path_utils
  10. import imagelib
  11. import cv2
  12. import models
  13. from interact import interact as io
  14. def trainerThread (s2c, c2s, e, args, device_args):
  15. while True:
  16. try:
  17. start_time = time.time()
  18. training_data_src_path = Path( args.get('training_data_src_dir', '') )
  19. training_data_dst_path = Path( args.get('training_data_dst_dir', '') )
  20. pretraining_data_path = args.get('pretraining_data_dir', '')
  21. pretraining_data_path = Path(pretraining_data_path) if pretraining_data_path is not None else None
  22. model_path = Path( args.get('model_path', '') )
  23. model_name = args.get('model_name', '')
  24. save_interval_min = 15
  25. debug = args.get('debug', '')
  26. execute_programs = args.get('execute_programs', [])
  27. no_preview = args.get('no_preview', False)
  28. if not training_data_src_path.exists():
  29. io.log_err('Training data src directory does not exist.')
  30. break
  31. if not training_data_dst_path.exists():
  32. io.log_err('Training data dst directory does not exist.')
  33. break
  34. if not model_path.exists():
  35. model_path.mkdir(exist_ok=True)
  36. model = models.import_model(model_name)(
  37. model_path,
  38. training_data_src_path=training_data_src_path,
  39. training_data_dst_path=training_data_dst_path,
  40. pretraining_data_path=pretraining_data_path,
  41. is_training=True,
  42. debug=debug,
  43. no_preview=no_preview,
  44. device_args=device_args)
  45. is_reached_goal = model.is_reached_iter_goal()
  46. shared_state = { 'after_save' : False }
  47. loss_string = ""
  48. save_iter = model.get_iter()
  49. def model_save():
  50. if not debug and not is_reached_goal:
  51. io.log_info ("Saving....", end='\r')
  52. model.save()
  53. shared_state['after_save'] = True
  54. def send_preview():
  55. if not debug:
  56. previews = model.get_previews()
  57. c2s.put ( {'op':'show', 'previews': previews, 'iter':model.get_iter(), 'loss_history': model.get_loss_history().copy() } )
  58. else:
  59. previews = [( 'debug, press update for new', model.debug_one_iter())]
  60. c2s.put ( {'op':'show', 'previews': previews} )
  61. e.set() #Set the GUI Thread as Ready
  62. if model.is_first_run():
  63. model_save()
  64. if model.get_target_iter() != 0:
  65. if is_reached_goal:
  66. io.log_info('Model already trained to target iteration. You can use preview.')
  67. else:
  68. io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % ( model.get_target_iter() ) )
  69. else:
  70. io.log_info('Starting. Press "Enter" to stop training and save model.')
  71. last_save_time = time.time()
  72. execute_programs = [ [x[0], x[1], time.time() ] for x in execute_programs ]
  73. for i in itertools.count(0,1):
  74. if not debug:
  75. cur_time = time.time()
  76. for x in execute_programs:
  77. prog_time, prog, last_time = x
  78. exec_prog = False
  79. if prog_time > 0 and (cur_time - start_time) >= prog_time:
  80. x[0] = 0
  81. exec_prog = True
  82. elif prog_time < 0 and (cur_time - last_time) >= -prog_time:
  83. x[2] = cur_time
  84. exec_prog = True
  85. if exec_prog:
  86. try:
  87. exec(prog)
  88. except Exception as e:
  89. print("Unable to execute program: %s" % (prog) )
  90. if not is_reached_goal:
  91. iter, iter_time = model.train_one_iter()
  92. loss_history = model.get_loss_history()
  93. time_str = time.strftime("[%H:%M:%S]")
  94. if iter_time >= 10:
  95. loss_string = "{0}[#{1:06d}][{2:.5s}s]".format ( time_str, iter, '{:0.4f}'.format(iter_time) )
  96. else:
  97. loss_string = "{0}[#{1:06d}][{2:04d}ms]".format ( time_str, iter, int(iter_time*1000) )
  98. if shared_state['after_save']:
  99. shared_state['after_save'] = False
  100. last_save_time = time.time() #upd last_save_time only after save+one_iter, because plaidML rebuilds programs after save https://github.com/plaidml/plaidml/issues/274
  101. mean_loss = np.mean ( [ np.array(loss_history[i]) for i in range(save_iter, iter) ], axis=0)
  102. for loss_value in mean_loss:
  103. loss_string += "[%.4f]" % (loss_value)
  104. io.log_info (loss_string)
  105. save_iter = iter
  106. else:
  107. for loss_value in loss_history[-1]:
  108. loss_string += "[%.4f]" % (loss_value)
  109. if io.is_colab():
  110. io.log_info ('\r' + loss_string, end='')
  111. else:
  112. io.log_info (loss_string, end='\r')
  113. if model.get_target_iter() != 0 and model.is_reached_iter_goal():
  114. io.log_info ('Reached target iteration.')
  115. model_save()
  116. is_reached_goal = True
  117. io.log_info ('You can use preview now.')
  118. if not is_reached_goal and (time.time() - last_save_time) >= save_interval_min*60:
  119. model_save()
  120. send_preview()
  121. if i==0:
  122. if is_reached_goal:
  123. model.pass_one_iter()
  124. send_preview()
  125. if debug:
  126. time.sleep(0.005)
  127. while not s2c.empty():
  128. input = s2c.get()
  129. op = input['op']
  130. if op == 'save':
  131. model_save()
  132. elif op == 'preview':
  133. if is_reached_goal:
  134. model.pass_one_iter()
  135. send_preview()
  136. elif op == 'close':
  137. model_save()
  138. i = -1
  139. break
  140. if i == -1:
  141. break
  142. model.finalize()
  143. except Exception as e:
  144. print ('Error: %s' % (str(e)))
  145. traceback.print_exc()
  146. break
  147. c2s.put ( {'op':'close'} )
  148. def main(args, device_args):
  149. io.log_info ("Running trainer.\r\n")
  150. no_preview = args.get('no_preview', False)
  151. s2c = queue.Queue()
  152. c2s = queue.Queue()
  153. e = threading.Event()
  154. thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e, args, device_args) )
  155. thread.start()
  156. e.wait() #Wait for inital load to occur.
  157. if no_preview:
  158. while True:
  159. if not c2s.empty():
  160. input = c2s.get()
  161. op = input.get('op','')
  162. if op == 'close':
  163. break
  164. try:
  165. io.process_messages(0.1)
  166. except KeyboardInterrupt:
  167. s2c.put ( {'op': 'close'} )
  168. else:
  169. wnd_name = "Training preview"
  170. io.named_window(wnd_name)
  171. io.capture_keys(wnd_name)
  172. previews = None
  173. loss_history = None
  174. selected_preview = 0
  175. update_preview = False
  176. is_showing = False
  177. is_waiting_preview = False
  178. show_last_history_iters_count = 0
  179. iter = 0
  180. while True:
  181. if not c2s.empty():
  182. input = c2s.get()
  183. op = input['op']
  184. if op == 'show':
  185. is_waiting_preview = False
  186. loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
  187. previews = input['previews'] if 'previews' in input.keys() else None
  188. iter = input['iter'] if 'iter' in input.keys() else 0
  189. if previews is not None:
  190. max_w = 0
  191. max_h = 0
  192. for (preview_name, preview_rgb) in previews:
  193. (h, w, c) = preview_rgb.shape
  194. max_h = max (max_h, h)
  195. max_w = max (max_w, w)
  196. max_size = 800
  197. if max_h > max_size:
  198. max_w = int( max_w / (max_h / max_size) )
  199. max_h = max_size
  200. #make all previews size equal
  201. for preview in previews[:]:
  202. (preview_name, preview_rgb) = preview
  203. (h, w, c) = preview_rgb.shape
  204. if h != max_h or w != max_w:
  205. previews.remove(preview)
  206. previews.append ( (preview_name, cv2.resize(preview_rgb, (max_w, max_h))) )
  207. selected_preview = selected_preview % len(previews)
  208. update_preview = True
  209. elif op == 'close':
  210. break
  211. if update_preview:
  212. update_preview = False
  213. selected_preview_name = previews[selected_preview][0]
  214. selected_preview_rgb = previews[selected_preview][1]
  215. (h,w,c) = selected_preview_rgb.shape
  216. # HEAD
  217. head_lines = [
  218. '[s]:save [enter]:exit',
  219. '[p]:update [space]:next preview [l]:change history range',
  220. 'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
  221. ]
  222. head_line_height = 15
  223. head_height = len(head_lines) * head_line_height
  224. head = np.ones ( (head_height,w,c) ) * 0.1
  225. for i in range(0, len(head_lines)):
  226. t = i*head_line_height
  227. b = (i+1)*head_line_height
  228. head[t:b, 0:w] += imagelib.get_text_image ( (head_line_height,w,c) , head_lines[i], color=[0.8]*c )
  229. final = head
  230. if loss_history is not None:
  231. if show_last_history_iters_count == 0:
  232. loss_history_to_show = loss_history
  233. else:
  234. loss_history_to_show = loss_history[-show_last_history_iters_count:]
  235. lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iter, w, c)
  236. final = np.concatenate ( [final, lh_img], axis=0 )
  237. final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
  238. final = np.clip(final, 0, 1)
  239. io.show_image( wnd_name, (final*255).astype(np.uint8) )
  240. is_showing = True
  241. key_events = io.get_key_events(wnd_name)
  242. key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
  243. if key == ord('\n') or key == ord('\r'):
  244. s2c.put ( {'op': 'close'} )
  245. elif key == ord('s'):
  246. s2c.put ( {'op': 'save'} )
  247. elif key == ord('p'):
  248. if not is_waiting_preview:
  249. is_waiting_preview = True
  250. s2c.put ( {'op': 'preview'} )
  251. elif key == ord('l'):
  252. if show_last_history_iters_count == 0:
  253. show_last_history_iters_count = 5000
  254. elif show_last_history_iters_count == 5000:
  255. show_last_history_iters_count = 10000
  256. elif show_last_history_iters_count == 10000:
  257. show_last_history_iters_count = 50000
  258. elif show_last_history_iters_count == 50000:
  259. show_last_history_iters_count = 100000
  260. elif show_last_history_iters_count == 100000:
  261. show_last_history_iters_count = 0
  262. update_preview = True
  263. elif key == ord(' '):
  264. selected_preview = (selected_preview + 1) % len(previews)
  265. update_preview = True
  266. try:
  267. io.process_messages(0.1)
  268. except KeyboardInterrupt:
  269. s2c.put ( {'op': 'close'} )
  270. io.destroy_all_windows()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...