1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
- import collections
- import math
- from enum import IntEnum
- import cv2
- import numpy as np
- from core import imagelib
- from core.cv2ex import *
- from core.imagelib import sd
- from facelib import FaceType, LandmarksProcessor
- class SampleProcessor(object):
- class SampleType(IntEnum):
- NONE = 0
- IMAGE = 1
- FACE_IMAGE = 2
- FACE_MASK = 3
- LANDMARKS_ARRAY = 4
- PITCH_YAW_ROLL = 5
- PITCH_YAW_ROLL_SIGMOID = 6
- class ChannelType(IntEnum):
- NONE = 0
- BGR = 1 #BGR
- G = 2 #Grayscale
- GGG = 3 #3xGrayscale
- class FaceMaskType(IntEnum):
- NONE = 0
- FULL_FACE = 1 # mask all hull as grayscale
- EYES = 2 # mask eyes hull as grayscale
- EYES_MOUTH = 3 # eyes and mouse
- class Options(object):
- def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
- self.random_flip = random_flip
- self.rotation_range = rotation_range
- self.scale_range = scale_range
- self.tx_range = tx_range
- self.ty_range = ty_range
- @staticmethod
- def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None):
- SPST = SampleProcessor.SampleType
- SPCT = SampleProcessor.ChannelType
- SPFMT = SampleProcessor.FaceMaskType
-
- outputs = []
- for sample in samples:
- sample_rnd_seed = np.random.randint(0x80000000)
-
- sample_face_type = sample.face_type
- sample_bgr = sample.load_bgr()
- sample_landmarks = sample.landmarks
- ct_sample_bgr = None
- h,w,c = sample_bgr.shape
-
- def get_full_face_mask():
- xseg_mask = sample.get_xseg_mask()
- if xseg_mask is not None:
- if xseg_mask.shape[0] != h or xseg_mask.shape[1] != w:
- xseg_mask = cv2.resize(xseg_mask, (w,h), interpolation=cv2.INTER_CUBIC)
- xseg_mask = imagelib.normalize_channels(xseg_mask, 1)
- return np.clip(xseg_mask, 0, 1)
- else:
- full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
- return np.clip(full_face_mask, 0, 1)
-
- def get_eyes_mask():
- eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
- return np.clip(eyes_mask, 0, 1)
-
- def get_eyes_mouth_mask():
- eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
- mouth_mask = LandmarksProcessor.get_image_mouth_mask (sample_bgr.shape, sample_landmarks)
- mask = eyes_mask + mouth_mask
- return np.clip(mask, 0, 1)
-
- is_face_sample = sample_landmarks is not None
- if debug and is_face_sample:
- LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0))
- outputs_sample = []
- for opts in output_sample_types:
- resolution = opts.get('resolution', 0)
- sample_type = opts.get('sample_type', SPST.NONE)
- channel_type = opts.get('channel_type', SPCT.NONE)
- nearest_resize_to = opts.get('nearest_resize_to', None)
- warp = opts.get('warp', False)
- transform = opts.get('transform', False)
- random_hsv_shift_amount = opts.get('random_hsv_shift_amount', 0)
- normalize_tanh = opts.get('normalize_tanh', False)
- ct_mode = opts.get('ct_mode', None)
- data_format = opts.get('data_format', 'NHWC')
-
- rnd_seed_shift = opts.get('rnd_seed_shift', 0)
- warp_rnd_seed_shift = opts.get('warp_rnd_seed_shift', rnd_seed_shift)
-
- rnd_state = np.random.RandomState (sample_rnd_seed+rnd_seed_shift)
- warp_rnd_state = np.random.RandomState (sample_rnd_seed+warp_rnd_seed_shift)
-
- warp_params = imagelib.gen_warp_params(resolution,
- sample_process_options.random_flip,
- rotation_range=sample_process_options.rotation_range,
- scale_range=sample_process_options.scale_range,
- tx_range=sample_process_options.tx_range,
- ty_range=sample_process_options.ty_range,
- rnd_state=rnd_state,
- warp_rnd_state=warp_rnd_state,
- )
-
- if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE:
- border_replicate = False
- elif sample_type == SPST.FACE_IMAGE:
- border_replicate = True
-
-
- border_replicate = opts.get('border_replicate', border_replicate)
- borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT
-
-
- if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
- if not is_face_sample:
- raise ValueError("face_samples should be provided for sample_type FACE_*")
- if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
- face_type = opts.get('face_type', None)
- face_mask_type = opts.get('face_mask_type', SPFMT.NONE)
-
- if face_type is None:
- raise ValueError("face_type must be defined for face samples")
- if sample_type == SPST.FACE_MASK:
- if face_mask_type == SPFMT.FULL_FACE:
- img = get_full_face_mask()
- elif face_mask_type == SPFMT.EYES:
- img = get_eyes_mask()
- elif face_mask_type == SPFMT.EYES_MOUTH:
- mask = get_full_face_mask().copy()
- mask[mask != 0.0] = 1.0
- img = get_eyes_mouth_mask()*mask
- else:
- img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
- if sample_face_type == FaceType.MARK_ONLY:
- raise NotImplementedError()
- mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
- img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
-
- img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
- img = cv2.resize( img, (resolution,resolution), interpolation=cv2.INTER_LINEAR )
- else:
- if face_type != sample_face_type:
- mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
- img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR )
- else:
- if w != resolution:
- img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LINEAR )
-
- img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
- if face_mask_type == SPFMT.EYES_MOUTH:
- div = img.max()
- if div != 0.0:
- img = img / div # normalize to 1.0 after warp
-
- if len(img.shape) == 2:
- img = img[...,None]
-
- if channel_type == SPCT.G:
- out_sample = img.astype(np.float32)
- else:
- raise ValueError("only channel_type.G supported for the mask")
- elif sample_type == SPST.FACE_IMAGE:
- img = sample_bgr
-
- if face_type != sample_face_type:
- mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
- img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC )
- else:
- if w != resolution:
- img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
-
- # Apply random color transfer
- if ct_mode is not None and ct_sample is not None:
- if ct_sample_bgr is None:
- ct_sample_bgr = ct_sample.load_bgr()
- img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) )
-
- if random_hsv_shift_amount != 0:
- a = random_hsv_shift_amount
- h_amount = max(1, int(360*a*0.5))
- img_h, img_s, img_v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
- img_h = (img_h + rnd_state.randint(-h_amount, h_amount+1) ) % 360
- img_s = np.clip (img_s + (rnd_state.random()-0.5)*a, 0, 1 )
- img_v = np.clip (img_v + (rnd_state.random()-0.5)*a, 0, 1 )
- img = np.clip( cv2.cvtColor(cv2.merge([img_h, img_s, img_v]), cv2.COLOR_HSV2BGR) , 0, 1 )
- img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate)
-
- img = np.clip(img.astype(np.float32), 0, 1)
- # Transform from BGR to desired channel_type
- if channel_type == SPCT.BGR:
- out_sample = img
- elif channel_type == SPCT.G:
- out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
- elif channel_type == SPCT.GGG:
- out_sample = np.repeat ( np.expand_dims(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),-1), (3,), -1)
- # Final transformations
- if nearest_resize_to is not None:
- out_sample = cv2_resize(out_sample, (nearest_resize_to,nearest_resize_to), interpolation=cv2.INTER_NEAREST)
-
- if not debug:
- if normalize_tanh:
- out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
- if data_format == "NCHW":
- out_sample = np.transpose(out_sample, (2,0,1) )
- elif sample_type == SPST.IMAGE:
- img = sample_bgr
- img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=True)
- img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
- out_sample = img
-
- if data_format == "NCHW":
- out_sample = np.transpose(out_sample, (2,0,1) )
-
-
- elif sample_type == SPST.LANDMARKS_ARRAY:
- l = sample_landmarks
- l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
- l = np.clip(l, 0.0, 1.0)
- out_sample = l
- elif sample_type == SPST.PITCH_YAW_ROLL or sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
- pitch,yaw,roll = sample.get_pitch_yaw_roll()
- if warp_params['flip']:
- yaw = -yaw
- if sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
- pitch = np.clip( (pitch / math.pi) / 2.0 + 0.5, 0, 1)
- yaw = np.clip( (yaw / math.pi) / 2.0 + 0.5, 0, 1)
- roll = np.clip( (roll / math.pi) / 2.0 + 0.5, 0, 1)
- out_sample = (pitch, yaw)
- else:
- raise ValueError ('expected sample_type')
- outputs_sample.append ( out_sample )
- outputs += [outputs_sample]
- return outputs
|