Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

SampleProcessor.py 13 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  1. import collections
  2. import math
  3. from enum import IntEnum
  4. import cv2
  5. import numpy as np
  6. from core import imagelib
  7. from core.cv2ex import *
  8. from core.imagelib import sd
  9. from facelib import FaceType, LandmarksProcessor
  10. class SampleProcessor(object):
  11. class SampleType(IntEnum):
  12. NONE = 0
  13. IMAGE = 1
  14. FACE_IMAGE = 2
  15. FACE_MASK = 3
  16. LANDMARKS_ARRAY = 4
  17. PITCH_YAW_ROLL = 5
  18. PITCH_YAW_ROLL_SIGMOID = 6
  19. class ChannelType(IntEnum):
  20. NONE = 0
  21. BGR = 1 #BGR
  22. G = 2 #Grayscale
  23. GGG = 3 #3xGrayscale
  24. class FaceMaskType(IntEnum):
  25. NONE = 0
  26. FULL_FACE = 1 # mask all hull as grayscale
  27. EYES = 2 # mask eyes hull as grayscale
  28. EYES_MOUTH = 3 # eyes and mouse
  29. class Options(object):
  30. def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
  31. self.random_flip = random_flip
  32. self.rotation_range = rotation_range
  33. self.scale_range = scale_range
  34. self.tx_range = tx_range
  35. self.ty_range = ty_range
  36. @staticmethod
  37. def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None):
  38. SPST = SampleProcessor.SampleType
  39. SPCT = SampleProcessor.ChannelType
  40. SPFMT = SampleProcessor.FaceMaskType
  41. outputs = []
  42. for sample in samples:
  43. sample_rnd_seed = np.random.randint(0x80000000)
  44. sample_face_type = sample.face_type
  45. sample_bgr = sample.load_bgr()
  46. sample_landmarks = sample.landmarks
  47. ct_sample_bgr = None
  48. h,w,c = sample_bgr.shape
  49. def get_full_face_mask():
  50. xseg_mask = sample.get_xseg_mask()
  51. if xseg_mask is not None:
  52. if xseg_mask.shape[0] != h or xseg_mask.shape[1] != w:
  53. xseg_mask = cv2.resize(xseg_mask, (w,h), interpolation=cv2.INTER_CUBIC)
  54. xseg_mask = imagelib.normalize_channels(xseg_mask, 1)
  55. return np.clip(xseg_mask, 0, 1)
  56. else:
  57. full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
  58. return np.clip(full_face_mask, 0, 1)
  59. def get_eyes_mask():
  60. eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
  61. return np.clip(eyes_mask, 0, 1)
  62. def get_eyes_mouth_mask():
  63. eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
  64. mouth_mask = LandmarksProcessor.get_image_mouth_mask (sample_bgr.shape, sample_landmarks)
  65. mask = eyes_mask + mouth_mask
  66. return np.clip(mask, 0, 1)
  67. is_face_sample = sample_landmarks is not None
  68. if debug and is_face_sample:
  69. LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0))
  70. outputs_sample = []
  71. for opts in output_sample_types:
  72. resolution = opts.get('resolution', 0)
  73. sample_type = opts.get('sample_type', SPST.NONE)
  74. channel_type = opts.get('channel_type', SPCT.NONE)
  75. nearest_resize_to = opts.get('nearest_resize_to', None)
  76. warp = opts.get('warp', False)
  77. transform = opts.get('transform', False)
  78. random_hsv_shift_amount = opts.get('random_hsv_shift_amount', 0)
  79. normalize_tanh = opts.get('normalize_tanh', False)
  80. ct_mode = opts.get('ct_mode', None)
  81. data_format = opts.get('data_format', 'NHWC')
  82. rnd_seed_shift = opts.get('rnd_seed_shift', 0)
  83. warp_rnd_seed_shift = opts.get('warp_rnd_seed_shift', rnd_seed_shift)
  84. rnd_state = np.random.RandomState (sample_rnd_seed+rnd_seed_shift)
  85. warp_rnd_state = np.random.RandomState (sample_rnd_seed+warp_rnd_seed_shift)
  86. warp_params = imagelib.gen_warp_params(resolution,
  87. sample_process_options.random_flip,
  88. rotation_range=sample_process_options.rotation_range,
  89. scale_range=sample_process_options.scale_range,
  90. tx_range=sample_process_options.tx_range,
  91. ty_range=sample_process_options.ty_range,
  92. rnd_state=rnd_state,
  93. warp_rnd_state=warp_rnd_state,
  94. )
  95. if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE:
  96. border_replicate = False
  97. elif sample_type == SPST.FACE_IMAGE:
  98. border_replicate = True
  99. border_replicate = opts.get('border_replicate', border_replicate)
  100. borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT
  101. if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
  102. if not is_face_sample:
  103. raise ValueError("face_samples should be provided for sample_type FACE_*")
  104. if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
  105. face_type = opts.get('face_type', None)
  106. face_mask_type = opts.get('face_mask_type', SPFMT.NONE)
  107. if face_type is None:
  108. raise ValueError("face_type must be defined for face samples")
  109. if sample_type == SPST.FACE_MASK:
  110. if face_mask_type == SPFMT.FULL_FACE:
  111. img = get_full_face_mask()
  112. elif face_mask_type == SPFMT.EYES:
  113. img = get_eyes_mask()
  114. elif face_mask_type == SPFMT.EYES_MOUTH:
  115. mask = get_full_face_mask().copy()
  116. mask[mask != 0.0] = 1.0
  117. img = get_eyes_mouth_mask()*mask
  118. else:
  119. img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
  120. if sample_face_type == FaceType.MARK_ONLY:
  121. raise NotImplementedError()
  122. mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
  123. img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
  124. img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
  125. img = cv2.resize( img, (resolution,resolution), interpolation=cv2.INTER_LINEAR )
  126. else:
  127. if face_type != sample_face_type:
  128. mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
  129. img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR )
  130. else:
  131. if w != resolution:
  132. img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LINEAR )
  133. img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
  134. if face_mask_type == SPFMT.EYES_MOUTH:
  135. div = img.max()
  136. if div != 0.0:
  137. img = img / div # normalize to 1.0 after warp
  138. if len(img.shape) == 2:
  139. img = img[...,None]
  140. if channel_type == SPCT.G:
  141. out_sample = img.astype(np.float32)
  142. else:
  143. raise ValueError("only channel_type.G supported for the mask")
  144. elif sample_type == SPST.FACE_IMAGE:
  145. img = sample_bgr
  146. if face_type != sample_face_type:
  147. mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
  148. img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC )
  149. else:
  150. if w != resolution:
  151. img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
  152. # Apply random color transfer
  153. if ct_mode is not None and ct_sample is not None:
  154. if ct_sample_bgr is None:
  155. ct_sample_bgr = ct_sample.load_bgr()
  156. img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) )
  157. if random_hsv_shift_amount != 0:
  158. a = random_hsv_shift_amount
  159. h_amount = max(1, int(360*a*0.5))
  160. img_h, img_s, img_v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
  161. img_h = (img_h + rnd_state.randint(-h_amount, h_amount+1) ) % 360
  162. img_s = np.clip (img_s + (rnd_state.random()-0.5)*a, 0, 1 )
  163. img_v = np.clip (img_v + (rnd_state.random()-0.5)*a, 0, 1 )
  164. img = np.clip( cv2.cvtColor(cv2.merge([img_h, img_s, img_v]), cv2.COLOR_HSV2BGR) , 0, 1 )
  165. img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate)
  166. img = np.clip(img.astype(np.float32), 0, 1)
  167. # Transform from BGR to desired channel_type
  168. if channel_type == SPCT.BGR:
  169. out_sample = img
  170. elif channel_type == SPCT.G:
  171. out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
  172. elif channel_type == SPCT.GGG:
  173. out_sample = np.repeat ( np.expand_dims(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),-1), (3,), -1)
  174. # Final transformations
  175. if nearest_resize_to is not None:
  176. out_sample = cv2_resize(out_sample, (nearest_resize_to,nearest_resize_to), interpolation=cv2.INTER_NEAREST)
  177. if not debug:
  178. if normalize_tanh:
  179. out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
  180. if data_format == "NCHW":
  181. out_sample = np.transpose(out_sample, (2,0,1) )
  182. elif sample_type == SPST.IMAGE:
  183. img = sample_bgr
  184. img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=True)
  185. img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
  186. out_sample = img
  187. if data_format == "NCHW":
  188. out_sample = np.transpose(out_sample, (2,0,1) )
  189. elif sample_type == SPST.LANDMARKS_ARRAY:
  190. l = sample_landmarks
  191. l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
  192. l = np.clip(l, 0.0, 1.0)
  193. out_sample = l
  194. elif sample_type == SPST.PITCH_YAW_ROLL or sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
  195. pitch,yaw,roll = sample.get_pitch_yaw_roll()
  196. if warp_params['flip']:
  197. yaw = -yaw
  198. if sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
  199. pitch = np.clip( (pitch / math.pi) / 2.0 + 0.5, 0, 1)
  200. yaw = np.clip( (yaw / math.pi) / 2.0 + 0.5, 0, 1)
  201. roll = np.clip( (roll / math.pi) / 2.0 + 0.5, 0, 1)
  202. out_sample = (pitch, yaw)
  203. else:
  204. raise ValueError ('expected sample_type')
  205. outputs_sample.append ( out_sample )
  206. outputs += [outputs_sample]
  207. return outputs
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...