1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
- import multiprocessing
- import pickle
- import time
- import traceback
- from enum import IntEnum
- import cv2
- import numpy as np
- from core import imagelib, mplib, pathex
- from core.cv2ex import *
- from core.interact import interact as io
- from core.joblib import SubprocessGenerator, ThisThreadGenerator
- from facelib import LandmarksProcessor
- from samplelib import SampleGeneratorBase
- class MaskType(IntEnum):
- none = 0,
- cloth = 1,
- ear_r = 2,
- eye_g = 3,
- hair = 4,
- hat = 5,
- l_brow = 6,
- l_ear = 7,
- l_eye = 8,
- l_lip = 9,
- mouth = 10,
- neck = 11,
- neck_l = 12,
- nose = 13,
- r_brow = 14,
- r_ear = 15,
- r_eye = 16,
- skin = 17,
- u_lip = 18
- MaskType_to_name = {
- int(MaskType.none ) : 'none',
- int(MaskType.cloth ) : 'cloth',
- int(MaskType.ear_r ) : 'ear_r',
- int(MaskType.eye_g ) : 'eye_g',
- int(MaskType.hair ) : 'hair',
- int(MaskType.hat ) : 'hat',
- int(MaskType.l_brow) : 'l_brow',
- int(MaskType.l_ear ) : 'l_ear',
- int(MaskType.l_eye ) : 'l_eye',
- int(MaskType.l_lip ) : 'l_lip',
- int(MaskType.mouth ) : 'mouth',
- int(MaskType.neck ) : 'neck',
- int(MaskType.neck_l) : 'neck_l',
- int(MaskType.nose ) : 'nose',
- int(MaskType.r_brow) : 'r_brow',
- int(MaskType.r_ear ) : 'r_ear',
- int(MaskType.r_eye ) : 'r_eye',
- int(MaskType.skin ) : 'skin',
- int(MaskType.u_lip ) : 'u_lip',
- }
- MaskType_from_name = { MaskType_to_name[k] : k for k in MaskType_to_name.keys() }
- class SampleGeneratorFaceCelebAMaskHQ(SampleGeneratorBase):
- def __init__ (self, root_path, debug=False, batch_size=1, resolution=256,
- generators_count=4, data_format="NHWC",
- **kwargs):
- super().__init__(debug, batch_size)
- self.initialized = False
- dataset_path = root_path / 'CelebAMask-HQ'
- if not dataset_path.exists():
- raise ValueError(f'Unable to find {dataset_path}')
- images_path = dataset_path /'CelebA-HQ-img'
- if not images_path.exists():
- raise ValueError(f'Unable to find {images_path}')
- masks_path = dataset_path / 'CelebAMask-HQ-mask-anno'
- if not masks_path.exists():
- raise ValueError(f'Unable to find {masks_path}')
- if self.debug:
- self.generators_count = 1
- else:
- self.generators_count = max(1, generators_count)
- source_images_paths = pathex.get_image_paths(images_path, return_Path_class=True)
- source_images_paths_len = len(source_images_paths)
- mask_images_paths = pathex.get_image_paths(masks_path, subdirs=True, return_Path_class=True)
- if source_images_paths_len == 0 or len(mask_images_paths) == 0:
- raise ValueError('No training data provided.')
- mask_file_id_hash = {}
- for filepath in io.progress_bar_generator(mask_images_paths, "Loading"):
- stem = filepath.stem
- file_id, mask_type = stem.split('_', 1)
- file_id = int(file_id)
- if file_id not in mask_file_id_hash:
- mask_file_id_hash[file_id] = {}
- mask_file_id_hash[file_id][ MaskType_from_name[mask_type] ] = str(filepath.relative_to(masks_path))
- source_file_id_set = set()
- for filepath in source_images_paths:
- stem = filepath.stem
- file_id = int(stem)
- source_file_id_set.update ( {file_id} )
- for k in mask_file_id_hash.keys():
- if k not in source_file_id_set:
- io.log_err (f"Corrupted dataset: {k} not in {images_path}")
- if self.debug:
- self.generators = [ThisThreadGenerator ( self.batch_func, (images_path, masks_path, mask_file_id_hash, data_format) )]
- else:
- self.generators = [SubprocessGenerator ( self.batch_func, (images_path, masks_path, mask_file_id_hash, data_format), start_now=False ) \
- for i in range(self.generators_count) ]
- SubprocessGenerator.start_in_parallel( self.generators )
- self.generator_counter = -1
- self.initialized = True
- #overridable
- def is_initialized(self):
- return self.initialized
- def __iter__(self):
- return self
- def __next__(self):
- self.generator_counter += 1
- generator = self.generators[self.generator_counter % len(self.generators) ]
- return next(generator)
- def batch_func(self, param ):
- images_path, masks_path, mask_file_id_hash, data_format = param
- file_ids = list(mask_file_id_hash.keys())
- shuffle_file_ids = []
- resolution = 256
- random_flip = True
- rotation_range=[-15,15]
- scale_range=[-0.10, 0.95]
- tx_range=[-0.3, 0.3]
- ty_range=[-0.3, 0.3]
- random_bilinear_resize = (25,75)
- motion_blur = (25, 5)
- gaussian_blur = (25, 5)
- bs = self.batch_size
- while True:
- batches = None
- n_batch = 0
- while n_batch < bs:
- try:
- if len(shuffle_file_ids) == 0:
- shuffle_file_ids = file_ids.copy()
- np.random.shuffle(shuffle_file_ids)
- file_id = shuffle_file_ids.pop()
- masks = mask_file_id_hash[file_id]
- image_path = images_path / f'{file_id}.jpg'
- skin_path = masks.get(MaskType.skin, None)
- hair_path = masks.get(MaskType.hair, None)
- hat_path = masks.get(MaskType.hat, None)
- #neck_path = masks.get(MaskType.neck, None)
- img = cv2_imread(image_path).astype(np.float32) / 255.0
- mask = cv2_imread(masks_path / skin_path)[...,0:1].astype(np.float32) / 255.0
- if hair_path is not None:
- hair_path = masks_path / hair_path
- if hair_path.exists():
- hair = cv2_imread(hair_path)[...,0:1].astype(np.float32) / 255.0
- mask *= (1-hair)
- if hat_path is not None:
- hat_path = masks_path / hat_path
- if hat_path.exists():
- hat = cv2_imread(hat_path)[...,0:1].astype(np.float32) / 255.0
- mask *= (1-hat)
-
- #if neck_path is not None:
- # neck_path = masks_path / neck_path
- # if neck_path.exists():
- # neck = cv2_imread(neck_path)[...,0:1].astype(np.float32) / 255.0
- # mask = np.clip(mask+neck, 0, 1)
-
- warp_params = imagelib.gen_warp_params(resolution, random_flip, rotation_range=rotation_range, scale_range=scale_range, tx_range=tx_range, ty_range=ty_range )
-
- img = cv2.resize( img, (resolution,resolution), cv2.INTER_LANCZOS4 )
- h, s, v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
- h = ( h + np.random.randint(360) ) % 360
- s = np.clip ( s + np.random.random()-0.5, 0, 1 )
- v = np.clip ( v + np.random.random()/2-0.25, 0, 1 )
- img = np.clip( cv2.cvtColor(cv2.merge([h, s, v]), cv2.COLOR_HSV2BGR) , 0, 1 )
-
- if motion_blur is not None:
- chance, mb_max_size = motion_blur
- chance = np.clip(chance, 0, 100)
- mblur_rnd_chance = np.random.randint(100)
- mblur_rnd_kernel = np.random.randint(mb_max_size)+1
- mblur_rnd_deg = np.random.randint(360)
- if mblur_rnd_chance < chance:
- img = imagelib.LinearMotionBlur (img, mblur_rnd_kernel, mblur_rnd_deg )
- img = imagelib.warp_by_params (warp_params, img, can_warp=True, can_transform=True, can_flip=True, border_replicate=False, cv2_inter=cv2.INTER_LANCZOS4)
-
- if gaussian_blur is not None:
- chance, kernel_max_size = gaussian_blur
- chance = np.clip(chance, 0, 100)
- gblur_rnd_chance = np.random.randint(100)
- gblur_rnd_kernel = np.random.randint(kernel_max_size)*2+1
- if gblur_rnd_chance < chance:
- img = cv2.GaussianBlur(img, (gblur_rnd_kernel,) *2 , 0)
-
- if random_bilinear_resize is not None:
- chance, max_size_per = random_bilinear_resize
- chance = np.clip(chance, 0, 100)
- pick_chance = np.random.randint(100)
- resize_to = resolution - int( np.random.rand()* int(resolution*(max_size_per/100.0)) )
- img = cv2.resize (img, (resize_to,resize_to), cv2.INTER_LINEAR )
- img = cv2.resize (img, (resolution,resolution), cv2.INTER_LINEAR )
-
-
- mask = cv2.resize( mask, (resolution,resolution), cv2.INTER_LANCZOS4 )[...,None]
- mask = imagelib.warp_by_params (warp_params, mask, can_warp=True, can_transform=True, can_flip=True, border_replicate=False, cv2_inter=cv2.INTER_LANCZOS4)
- mask[mask < 0.5] = 0.0
- mask[mask >= 0.5] = 1.0
- mask = np.clip(mask, 0, 1)
- if data_format == "NCHW":
- img = np.transpose(img, (2,0,1) )
- mask = np.transpose(mask, (2,0,1) )
-
- if batches is None:
- batches = [ [], [] ]
-
- batches[0].append ( img )
- batches[1].append ( mask )
- n_batch += 1
- except:
- io.log_err ( traceback.format_exc() )
- yield [ np.array(batch) for batch in batches]
|