1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
- from enum import IntEnum
- from pathlib import Path
- import cv2
- import numpy as np
- from core.cv2ex import *
- from facelib import LandmarksProcessor
- from core import imagelib
- from core.imagelib import SegIEPolys
- class SampleType(IntEnum):
- IMAGE = 0 #raw image
- FACE_BEGIN = 1
- FACE = 1 #aligned face unsorted
- FACE_PERSON = 2 #aligned face person
- FACE_TEMPORAL_SORTED = 3 #sorted by source filename
- FACE_END = 3
- QTY = 4
- class Sample(object):
- __slots__ = ['sample_type',
- 'filename',
- 'face_type',
- 'shape',
- 'landmarks',
- 'seg_ie_polys',
- 'xseg_mask',
- 'xseg_mask_compressed',
- 'eyebrows_expand_mod',
- 'source_filename',
- 'person_name',
- 'pitch_yaw_roll',
- '_filename_offset_size',
- ]
- def __init__(self, sample_type=None,
- filename=None,
- face_type=None,
- shape=None,
- landmarks=None,
- seg_ie_polys=None,
- xseg_mask=None,
- xseg_mask_compressed=None,
- eyebrows_expand_mod=None,
- source_filename=None,
- person_name=None,
- pitch_yaw_roll=None,
- **kwargs):
- self.sample_type = sample_type if sample_type is not None else SampleType.IMAGE
- self.filename = filename
- self.face_type = face_type
- self.shape = shape
- self.landmarks = np.array(landmarks) if landmarks is not None else None
-
- if isinstance(seg_ie_polys, SegIEPolys):
- self.seg_ie_polys = seg_ie_polys
- else:
- self.seg_ie_polys = SegIEPolys.load(seg_ie_polys)
-
- self.xseg_mask = xseg_mask
- self.xseg_mask_compressed = xseg_mask_compressed
-
- if self.xseg_mask_compressed is None and self.xseg_mask is not None:
- xseg_mask = np.clip( imagelib.normalize_channels(xseg_mask, 1)*255, 0, 255 ).astype(np.uint8)
- ret, xseg_mask_compressed = cv2.imencode('.png', xseg_mask)
- if not ret:
- raise Exception("Sample(): unable to generate xseg_mask_compressed")
- self.xseg_mask_compressed = xseg_mask_compressed
- self.xseg_mask = None
-
- self.eyebrows_expand_mod = eyebrows_expand_mod if eyebrows_expand_mod is not None else 1.0
- self.source_filename = source_filename
- self.person_name = person_name
- self.pitch_yaw_roll = pitch_yaw_roll
- self._filename_offset_size = None
- def has_xseg_mask(self):
- return self.xseg_mask is not None or self.xseg_mask_compressed is not None
-
- def get_xseg_mask(self):
- if self.xseg_mask_compressed is not None:
- xseg_mask = cv2.imdecode(self.xseg_mask_compressed, cv2.IMREAD_UNCHANGED)
- if len(xseg_mask.shape) == 2:
- xseg_mask = xseg_mask[...,None]
- return xseg_mask.astype(np.float32) / 255.0
- return self.xseg_mask
-
- def get_pitch_yaw_roll(self):
- if self.pitch_yaw_roll is None:
- self.pitch_yaw_roll = LandmarksProcessor.estimate_pitch_yaw_roll(self.landmarks, size=self.shape[1])
- return self.pitch_yaw_roll
- def set_filename_offset_size(self, filename, offset, size):
- self._filename_offset_size = (filename, offset, size)
- def read_raw_file(self, filename=None):
- if self._filename_offset_size is not None:
- filename, offset, size = self._filename_offset_size
- with open(filename, "rb") as f:
- f.seek( offset, 0)
- return f.read (size)
- else:
- with open(filename, "rb") as f:
- return f.read()
- def load_bgr(self):
- img = cv2_imread (self.filename, loader_func=self.read_raw_file).astype(np.float32) / 255.0
- return img
- def get_config(self):
- return {'sample_type': self.sample_type,
- 'filename': self.filename,
- 'face_type': self.face_type,
- 'shape': self.shape,
- 'landmarks': self.landmarks.tolist(),
- 'seg_ie_polys': self.seg_ie_polys.dump(),
- 'xseg_mask' : self.xseg_mask,
- 'xseg_mask_compressed' : self.xseg_mask_compressed,
- 'eyebrows_expand_mod': self.eyebrows_expand_mod,
- 'source_filename': self.source_filename,
- 'person_name': self.person_name
- }
|