1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
- import math
- import numpy as np
- import numpy.linalg as npla
- def rotation_matrix_to_euler(R : np.ndarray) -> np.ndarray:
- sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
- singular = sy < 1e-6
- if not singular :
- x = math.atan2(R[2,1] , R[2,2])
- y = math.atan2(-R[2,0], sy)
- z = math.atan2(R[1,0], R[0,0])
- else :
- x = math.atan2(-R[1,2], R[1,1])
- y = math.atan2(-R[2,0], sy)
- z = 0
- return np.array([x, y, z])
- def segment_length(p1 : np.ndarray, p2 : np.ndarray):
- """
- p1 (2,)
- p2 (2,)
- """
- return npla.norm(p2-p1)
- def segment_to_vector(p1 : np.ndarray, p2 : np.ndarray):
- """
- p1 (2,)
- p2 (2,)
- """
- x = p2-p1
- x /= npla.norm(x)
- return x
- def intersect_two_line(a1, a2, b1, b2) -> np.ndarray:
- """
- Returns the point of intersection of the lines (not segments) passing through a2,a1 and b2,b1.
- a1: [x, y] a point on the first line
- a2: [x, y] another point on the first line
- b1: [x, y] a point on the second line
- b2: [x, y] another point on the second line
- """
- s = np.vstack([a1,a2,b1,b2]) # s for stacked
- h = np.hstack((s, np.ones((4, 1)))) # h for homogeneous
- l1 = np.cross(h[0], h[1]) # get first line
- l2 = np.cross(h[2], h[3]) # get second line
- x, y, z = np.cross(l1, l2) # point of intersection
- if z == 0: # lines are parallel
- return (float('inf'), float('inf'))
- return np.array( [x/z, y/z], np.float32 )
- def polygon_area(poly : np.ndarray) -> float:
- """
- calculate area of n-vertices polygon with non intersecting edges
- poly np.ndarray (n,2)
- """
- return float( np.abs(np.sum( poly[:,0] * np.roll( poly[:,1], -1 ) - poly[:,1] * np.roll( poly[:,0], -1 ) ) / 2) )
|