Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

MergeMasked.py 18 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
  1. import sys
  2. import traceback
  3. import cv2
  4. import numpy as np
  5. from core import imagelib
  6. from core.cv2ex import *
  7. from core.interact import interact as io
  8. from facelib import FaceType, LandmarksProcessor
  9. is_windows = sys.platform[0:3] == 'win'
  10. xseg_input_size = 256
  11. def MergeMaskedFace (predictor_func, predictor_input_shape,
  12. face_enhancer_func,
  13. xseg_256_extract_func,
  14. cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
  15. img_size = img_bgr.shape[1], img_bgr.shape[0]
  16. img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
  17. input_size = predictor_input_shape[0]
  18. mask_subres_size = input_size*4
  19. output_size = input_size
  20. if cfg.super_resolution_power != 0:
  21. output_size *= 4
  22. face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
  23. face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
  24. if mask_subres_size == output_size:
  25. face_mask_output_mat = face_output_mat
  26. else:
  27. face_mask_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, mask_subres_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
  28. dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
  29. dst_face_bgr = np.clip(dst_face_bgr, 0, 1)
  30. dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
  31. dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)
  32. predictor_input_bgr = cv2.resize (dst_face_bgr, (input_size,input_size) )
  33. predicted = predictor_func (predictor_input_bgr)
  34. prd_face_bgr = np.clip (predicted[0], 0, 1.0)
  35. prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
  36. prd_face_dst_mask_a_0 = np.clip (predicted[2], 0, 1.0)
  37. if cfg.super_resolution_power != 0:
  38. prd_face_bgr_enhanced = face_enhancer_func(prd_face_bgr, is_tanh=True, preserve_size=False)
  39. mod = cfg.super_resolution_power / 100.0
  40. prd_face_bgr = cv2.resize(prd_face_bgr, (output_size,output_size))*(1.0-mod) + prd_face_bgr_enhanced*mod
  41. prd_face_bgr = np.clip(prd_face_bgr, 0, 1)
  42. if cfg.super_resolution_power != 0:
  43. prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
  44. prd_face_dst_mask_a_0 = cv2.resize (prd_face_dst_mask_a_0, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
  45. if cfg.mask_mode == 0: #full
  46. wrk_face_mask_a_0 = np.ones_like(dst_face_mask_a_0)
  47. elif cfg.mask_mode == 1: #dst
  48. wrk_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
  49. elif cfg.mask_mode == 2: #learned-prd
  50. wrk_face_mask_a_0 = prd_face_mask_a_0
  51. elif cfg.mask_mode == 3: #learned-dst
  52. wrk_face_mask_a_0 = prd_face_dst_mask_a_0
  53. elif cfg.mask_mode == 4: #learned-prd*learned-dst
  54. wrk_face_mask_a_0 = prd_face_mask_a_0*prd_face_dst_mask_a_0
  55. elif cfg.mask_mode == 5: #learned-prd+learned-dst
  56. wrk_face_mask_a_0 = np.clip( prd_face_mask_a_0+prd_face_dst_mask_a_0, 0, 1)
  57. elif cfg.mask_mode >= 6 and cfg.mask_mode <= 9: #XSeg modes
  58. if cfg.mask_mode == 6 or cfg.mask_mode == 8 or cfg.mask_mode == 9:
  59. # obtain XSeg-prd
  60. prd_face_xseg_bgr = cv2.resize (prd_face_bgr, (xseg_input_size,)*2, interpolation=cv2.INTER_CUBIC)
  61. prd_face_xseg_mask = xseg_256_extract_func(prd_face_xseg_bgr)
  62. X_prd_face_mask_a_0 = cv2.resize ( prd_face_xseg_mask, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
  63. if cfg.mask_mode >= 7 and cfg.mask_mode <= 9:
  64. # obtain XSeg-dst
  65. xseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, xseg_input_size, face_type=cfg.face_type)
  66. dst_face_xseg_bgr = cv2.warpAffine(img_bgr, xseg_mat, (xseg_input_size,)*2, flags=cv2.INTER_CUBIC )
  67. dst_face_xseg_mask = xseg_256_extract_func(dst_face_xseg_bgr)
  68. X_dst_face_mask_a_0 = cv2.resize (dst_face_xseg_mask, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
  69. if cfg.mask_mode == 6: #'XSeg-prd'
  70. wrk_face_mask_a_0 = X_prd_face_mask_a_0
  71. elif cfg.mask_mode == 7: #'XSeg-dst'
  72. wrk_face_mask_a_0 = X_dst_face_mask_a_0
  73. elif cfg.mask_mode == 8: #'XSeg-prd*XSeg-dst'
  74. wrk_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
  75. elif cfg.mask_mode == 9: #learned-prd*learned-dst*XSeg-prd*XSeg-dst
  76. wrk_face_mask_a_0 = prd_face_mask_a_0 * prd_face_dst_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0
  77. wrk_face_mask_a_0[ wrk_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
  78. # resize to mask_subres_size
  79. if wrk_face_mask_a_0.shape[0] != mask_subres_size:
  80. wrk_face_mask_a_0 = cv2.resize (wrk_face_mask_a_0, (mask_subres_size, mask_subres_size), interpolation=cv2.INTER_CUBIC)
  81. # process mask in local predicted space
  82. if 'raw' not in cfg.mode:
  83. # add zero pad
  84. wrk_face_mask_a_0 = np.pad (wrk_face_mask_a_0, input_size)
  85. ero = cfg.erode_mask_modifier
  86. blur = cfg.blur_mask_modifier
  87. if ero > 0:
  88. wrk_face_mask_a_0 = cv2.erode(wrk_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
  89. elif ero < 0:
  90. wrk_face_mask_a_0 = cv2.dilate(wrk_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
  91. # clip eroded/dilated mask in actual predict area
  92. # pad with half blur size in order to accuratelly fade to zero at the boundary
  93. clip_size = input_size + blur // 2
  94. wrk_face_mask_a_0[:clip_size,:] = 0
  95. wrk_face_mask_a_0[-clip_size:,:] = 0
  96. wrk_face_mask_a_0[:,:clip_size] = 0
  97. wrk_face_mask_a_0[:,-clip_size:] = 0
  98. if blur > 0:
  99. blur = blur + (1-blur % 2)
  100. wrk_face_mask_a_0 = cv2.GaussianBlur(wrk_face_mask_a_0, (blur, blur) , 0)
  101. wrk_face_mask_a_0 = wrk_face_mask_a_0[input_size:-input_size,input_size:-input_size]
  102. wrk_face_mask_a_0 = np.clip(wrk_face_mask_a_0, 0, 1)
  103. img_face_mask_a = cv2.warpAffine( wrk_face_mask_a_0, face_mask_output_mat, img_size, np.zeros(img_bgr.shape[0:2], dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )[...,None]
  104. img_face_mask_a = np.clip (img_face_mask_a, 0.0, 1.0)
  105. img_face_mask_a [ img_face_mask_a < (1.0/255.0) ] = 0.0 # get rid of noise
  106. if wrk_face_mask_a_0.shape[0] != output_size:
  107. wrk_face_mask_a_0 = cv2.resize (wrk_face_mask_a_0, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
  108. wrk_face_mask_a = wrk_face_mask_a_0[...,None]
  109. out_img = None
  110. out_merging_mask_a = None
  111. if cfg.mode == 'original':
  112. return img_bgr, img_face_mask_a
  113. elif 'raw' in cfg.mode:
  114. if cfg.mode == 'raw-rgb':
  115. out_img_face = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
  116. out_img_face_mask = cv2.warpAffine( np.ones_like(prd_face_bgr), face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
  117. out_img = img_bgr*(1-out_img_face_mask) + out_img_face*out_img_face_mask
  118. out_merging_mask_a = img_face_mask_a
  119. elif cfg.mode == 'raw-predict':
  120. out_img = prd_face_bgr
  121. out_merging_mask_a = wrk_face_mask_a
  122. else:
  123. raise ValueError(f"undefined raw type {cfg.mode}")
  124. out_img = np.clip (out_img, 0.0, 1.0 )
  125. else:
  126. # Process if the mask meets minimum size
  127. maxregion = np.argwhere( img_face_mask_a >= 0.1 )
  128. if maxregion.size != 0:
  129. miny,minx = maxregion.min(axis=0)[:2]
  130. maxy,maxx = maxregion.max(axis=0)[:2]
  131. lenx = maxx - minx
  132. leny = maxy - miny
  133. if min(lenx,leny) >= 4:
  134. wrk_face_mask_area_a = wrk_face_mask_a.copy()
  135. wrk_face_mask_area_a[wrk_face_mask_area_a>0] = 1.0
  136. if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
  137. if cfg.color_transfer_mode == 1: #rct
  138. prd_face_bgr = imagelib.reinhard_color_transfer (prd_face_bgr, dst_face_bgr, target_mask=wrk_face_mask_area_a, source_mask=wrk_face_mask_area_a)
  139. elif cfg.color_transfer_mode == 2: #lct
  140. prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
  141. elif cfg.color_transfer_mode == 3: #mkl
  142. prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr, dst_face_bgr)
  143. elif cfg.color_transfer_mode == 4: #mkl-m
  144. prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
  145. elif cfg.color_transfer_mode == 5: #idt
  146. prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr, dst_face_bgr)
  147. elif cfg.color_transfer_mode == 6: #idt-m
  148. prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
  149. elif cfg.color_transfer_mode == 7: #sot-m
  150. prd_face_bgr = imagelib.color_transfer_sot (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a, steps=10, batch_size=30)
  151. prd_face_bgr = np.clip (prd_face_bgr, 0.0, 1.0)
  152. elif cfg.color_transfer_mode == 8: #mix-m
  153. prd_face_bgr = imagelib.color_transfer_mix (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
  154. if cfg.mode == 'hist-match':
  155. hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
  156. if cfg.masked_hist_match:
  157. hist_mask_a *= wrk_face_mask_area_a
  158. white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
  159. hist_match_1 = prd_face_bgr*hist_mask_a + white
  160. hist_match_1[ hist_match_1 > 1.0 ] = 1.0
  161. hist_match_2 = dst_face_bgr*hist_mask_a + white
  162. hist_match_2[ hist_match_1 > 1.0 ] = 1.0
  163. prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold ).astype(dtype=np.float32)
  164. if 'seamless' in cfg.mode:
  165. #mask used for cv2.seamlessClone
  166. img_face_seamless_mask_a = None
  167. for i in range(1,10):
  168. a = img_face_mask_a > i / 10.0
  169. if len(np.argwhere(a)) == 0:
  170. continue
  171. img_face_seamless_mask_a = img_face_mask_a.copy()
  172. img_face_seamless_mask_a[a] = 1.0
  173. img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
  174. break
  175. out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
  176. out_img = np.clip(out_img, 0.0, 1.0)
  177. if 'seamless' in cfg.mode:
  178. try:
  179. #calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
  180. l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
  181. s_maskx, s_masky = int(l+w/2), int(t+h/2)
  182. out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
  183. out_img = out_img.astype(dtype=np.float32) / 255.0
  184. except Exception as e:
  185. #seamlessClone may fail in some cases
  186. e_str = traceback.format_exc()
  187. if 'MemoryError' in e_str:
  188. raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
  189. else:
  190. print ("Seamless fail: " + e_str)
  191. cfg_mp = cfg.motion_blur_power / 100.0
  192. out_img = img_bgr*(1-img_face_mask_a) + (out_img*img_face_mask_a)
  193. if ('seamless' in cfg.mode and cfg.color_transfer_mode != 0) or \
  194. cfg.mode == 'seamless-hist-match' or \
  195. cfg_mp != 0 or \
  196. cfg.blursharpen_amount != 0 or \
  197. cfg.image_denoise_power != 0 or \
  198. cfg.bicubic_degrade_power != 0:
  199. out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
  200. if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
  201. if cfg.color_transfer_mode == 1:
  202. out_face_bgr = imagelib.reinhard_color_transfer (out_face_bgr, dst_face_bgr, target_mask=wrk_face_mask_area_a, source_mask=wrk_face_mask_area_a)
  203. elif cfg.color_transfer_mode == 2: #lct
  204. out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
  205. elif cfg.color_transfer_mode == 3: #mkl
  206. out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr, dst_face_bgr)
  207. elif cfg.color_transfer_mode == 4: #mkl-m
  208. out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
  209. elif cfg.color_transfer_mode == 5: #idt
  210. out_face_bgr = imagelib.color_transfer_idt (out_face_bgr, dst_face_bgr)
  211. elif cfg.color_transfer_mode == 6: #idt-m
  212. out_face_bgr = imagelib.color_transfer_idt (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
  213. elif cfg.color_transfer_mode == 7: #sot-m
  214. out_face_bgr = imagelib.color_transfer_sot (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a, steps=10, batch_size=30)
  215. out_face_bgr = np.clip (out_face_bgr, 0.0, 1.0)
  216. elif cfg.color_transfer_mode == 8: #mix-m
  217. out_face_bgr = imagelib.color_transfer_mix (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
  218. if cfg.mode == 'seamless-hist-match':
  219. out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
  220. if cfg_mp != 0:
  221. k_size = int(frame_info.motion_power*cfg_mp)
  222. if k_size >= 1:
  223. k_size = np.clip (k_size+1, 2, 50)
  224. if cfg.super_resolution_power != 0:
  225. k_size *= 2
  226. out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
  227. if cfg.blursharpen_amount != 0:
  228. out_face_bgr = imagelib.blursharpen ( out_face_bgr, cfg.sharpen_mode, 3, cfg.blursharpen_amount)
  229. if cfg.image_denoise_power != 0:
  230. n = cfg.image_denoise_power
  231. while n > 0:
  232. img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
  233. if int(n / 100) != 0:
  234. img_bgr = img_bgr_denoised
  235. else:
  236. pass_power = (n % 100) / 100.0
  237. img_bgr = img_bgr*(1.0-pass_power)+img_bgr_denoised*pass_power
  238. n = max(n-10,0)
  239. if cfg.bicubic_degrade_power != 0:
  240. p = 1.0 - cfg.bicubic_degrade_power / 101.0
  241. img_bgr_downscaled = cv2.resize (img_bgr, ( int(img_size[0]*p), int(img_size[1]*p ) ), interpolation=cv2.INTER_CUBIC)
  242. img_bgr = cv2.resize (img_bgr_downscaled, img_size, interpolation=cv2.INTER_CUBIC)
  243. new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
  244. out_img = np.clip( img_bgr*(1-img_face_mask_a) + (new_out*img_face_mask_a) , 0, 1.0 )
  245. if cfg.color_degrade_power != 0:
  246. out_img_reduced = imagelib.reduce_colors(out_img, 256)
  247. if cfg.color_degrade_power == 100:
  248. out_img = out_img_reduced
  249. else:
  250. alpha = cfg.color_degrade_power / 100.0
  251. out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
  252. out_merging_mask_a = img_face_mask_a
  253. if out_img is None:
  254. out_img = img_bgr.copy()
  255. return out_img, out_merging_mask_a
  256. def MergeMasked (predictor_func,
  257. predictor_input_shape,
  258. face_enhancer_func,
  259. xseg_256_extract_func,
  260. cfg,
  261. frame_info):
  262. img_bgr_uint8 = cv2_imread(frame_info.filepath)
  263. img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
  264. img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
  265. outs = []
  266. for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
  267. out_img, out_img_merging_mask = MergeMaskedFace (predictor_func, predictor_input_shape, face_enhancer_func, xseg_256_extract_func, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
  268. outs += [ (out_img, out_img_merging_mask) ]
  269. #Combining multiple face outputs
  270. final_img = None
  271. final_mask = None
  272. for img, merging_mask in outs:
  273. h,w,c = img.shape
  274. if final_img is None:
  275. final_img = img
  276. final_mask = merging_mask
  277. else:
  278. final_img = final_img*(1-merging_mask) + img*merging_mask
  279. final_mask = np.clip (final_mask + merging_mask, 0, 1 )
  280. final_img = np.concatenate ( [final_img, final_mask], -1)
  281. return (final_img*255).astype(np.uint8)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...