Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel
Integration:  dvc git
561050a738
Configured the DVC remote
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
34bafa1bff
dvc init
1 year ago
513bee667b
Initialized project
1 year ago
fb3090059d
Added data and outputs to dvc
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
fb3090059d
Added data and outputs to dvc
1 year ago
513bee667b
Initialized project
1 year ago
fb3090059d
Added data and outputs to dvc
1 year ago
fb3090059d
Added data and outputs to dvc
1 year ago
513bee667b
Initialized project
1 year ago
fb3090059d
Added data and outputs to dvc
1 year ago
fb3090059d
Added data and outputs to dvc
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
513bee667b
Initialized project
1 year ago
Storage Buckets
Data Pipeline
Legend
DVC Managed File
Git Managed File
Metric
Stage File
External File

README.md

You have to be logged in to leave a comment. Sign In

Employee Future Predict

Motivation

In a data science team, it is common to continuously try to find a better model than the existing one in production. It is important to make sure the service doesn't break when the new model is deployed.

This project demonstrates how to use DagsHub and GitHub Actions to:

  • automatically test a pull request from a team member
  • merge a pull request when all tests passed
  • deploy the ML model to the existing service

Here is the summary of the workflow:

Experiment on DagsHub

After experimenting with different parameters using MLFlow and DagsHub, we choose a combinations of parameters that gives a better performance than the existing model in production and commit the code to Git.

Use GitHub Actions to Test Model

The first workflow named test_model.yaml automatically tests a new pull request, which can only be merged if all tests are passed.

Use GitHub Actions to Deploy Model After Merging

The second workflow named deploy_app.yaml automatically deploy the new model to the existing service after the pull request is merged.

.

Tip!

Press p or to see the previous file or, n or to see the next file

About

No description

Collaborators 1

Comments

Loading...