Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

logs.log 180 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
  1. 2023-08-22 08:17:14,969:WARNING:
  2. 'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
  3. 2023-08-22 08:17:14,969:WARNING:
  4. 'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
  5. 2023-08-22 08:17:14,969:WARNING:
  6. 'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
  7. 2023-08-22 08:17:14,969:WARNING:
  8. 'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
  9. 2023-08-22 08:17:18,390:INFO:PyCaret ClassificationExperiment
  10. 2023-08-22 08:17:18,391:INFO:Logging name: churn1
  11. 2023-08-22 08:17:18,391:INFO:ML Usecase: MLUsecase.CLASSIFICATION
  12. 2023-08-22 08:17:18,391:INFO:version 3.0.4
  13. 2023-08-22 08:17:18,391:INFO:Initializing setup()
  14. 2023-08-22 08:17:18,391:INFO:self.USI: 8b34
  15. 2023-08-22 08:17:18,391:INFO:self._variable_keys: {'fold_groups_param', 'gpu_n_jobs_param', 'exp_name_log', 'fold_shuffle_param', 'X_test', 'data', 'y', 'X', 'log_plots_param', 'logging_param', 'fold_generator', 'y_test', 'n_jobs_param', 'y_train', '_ml_usecase', 'html_param', 'exp_id', 'seed', 'idx', 'X_train', 'target_param', 'is_multiclass', 'pipeline', 'USI', '_available_plots', 'memory', 'gpu_param', 'fix_imbalance'}
  16. 2023-08-22 08:17:18,391:INFO:Checking environment
  17. 2023-08-22 08:17:18,391:INFO:python_version: 3.9.0
  18. 2023-08-22 08:17:18,391:INFO:python_build: ('default', 'Nov 15 2020 08:30:55')
  19. 2023-08-22 08:17:18,391:INFO:machine: AMD64
  20. 2023-08-22 08:17:18,391:INFO:platform: Windows-10-10.0.22621-SP0
  21. 2023-08-22 08:17:18,396:INFO:Memory: svmem(total=25505648640, available=13015683072, percent=49.0, used=12489965568, free=13015683072)
  22. 2023-08-22 08:17:18,396:INFO:Physical Core: 4
  23. 2023-08-22 08:17:18,397:INFO:Logical Core: 8
  24. 2023-08-22 08:17:18,397:INFO:Checking libraries
  25. 2023-08-22 08:17:18,397:INFO:System:
  26. 2023-08-22 08:17:18,397:INFO: python: 3.9.0 (default, Nov 15 2020, 08:30:55) [MSC v.1916 64 bit (AMD64)]
  27. 2023-08-22 08:17:18,397:INFO:executable: C:\Users\prvzs\anaconda3\envs\churn_prediction\python.exe
  28. 2023-08-22 08:17:18,397:INFO: machine: Windows-10-10.0.22621-SP0
  29. 2023-08-22 08:17:18,397:INFO:PyCaret required dependencies:
  30. 2023-08-22 08:17:18,662:INFO: pip: 23.2.1
  31. 2023-08-22 08:17:18,662:INFO: setuptools: 68.0.0
  32. 2023-08-22 08:17:18,662:INFO: pycaret: 3.0.4
  33. 2023-08-22 08:17:18,662:INFO: IPython: 8.14.0
  34. 2023-08-22 08:17:18,662:INFO: ipywidgets: 8.1.0
  35. 2023-08-22 08:17:18,662:INFO: tqdm: 4.66.1
  36. 2023-08-22 08:17:18,662:INFO: numpy: 1.23.5
  37. 2023-08-22 08:17:18,662:INFO: pandas: 1.3.0
  38. 2023-08-22 08:17:18,662:INFO: jinja2: 3.1.2
  39. 2023-08-22 08:17:18,662:INFO: scipy: 1.11.2
  40. 2023-08-22 08:17:18,662:INFO: joblib: 1.2.0
  41. 2023-08-22 08:17:18,662:INFO: sklearn: 1.2.2
  42. 2023-08-22 08:17:18,662:INFO: pyod: 1.1.0
  43. 2023-08-22 08:17:18,662:INFO: imblearn: 0.11.0
  44. 2023-08-22 08:17:18,678:INFO: category_encoders: 2.6.2
  45. 2023-08-22 08:17:18,678:INFO: lightgbm: 4.0.0
  46. 2023-08-22 08:17:18,678:INFO: numba: 0.57.1
  47. 2023-08-22 08:17:18,678:INFO: requests: 2.31.0
  48. 2023-08-22 08:17:18,678:INFO: matplotlib: 3.7.2
  49. 2023-08-22 08:17:18,678:INFO: scikitplot: 0.3.7
  50. 2023-08-22 08:17:18,678:INFO: yellowbrick: 1.5
  51. 2023-08-22 08:17:18,678:INFO: plotly: 5.16.1
  52. 2023-08-22 08:17:18,678:INFO: plotly-resampler: Not installed
  53. 2023-08-22 08:17:18,678:INFO: kaleido: 0.2.1
  54. 2023-08-22 08:17:18,678:INFO: schemdraw: 0.15
  55. 2023-08-22 08:17:18,678:INFO: statsmodels: 0.14.0
  56. 2023-08-22 08:17:18,678:INFO: sktime: 0.22.0
  57. 2023-08-22 08:17:18,678:INFO: tbats: 1.1.3
  58. 2023-08-22 08:17:18,678:INFO: pmdarima: 2.0.3
  59. 2023-08-22 08:17:18,678:INFO: psutil: 5.9.5
  60. 2023-08-22 08:17:18,678:INFO: markupsafe: 2.1.3
  61. 2023-08-22 08:17:18,678:INFO: pickle5: Not installed
  62. 2023-08-22 08:17:18,678:INFO: cloudpickle: 2.2.1
  63. 2023-08-22 08:17:18,678:INFO: deprecation: 2.1.0
  64. 2023-08-22 08:17:18,678:INFO: xxhash: 3.3.0
  65. 2023-08-22 08:17:18,678:INFO: wurlitzer: Not installed
  66. 2023-08-22 08:17:18,678:INFO:PyCaret optional dependencies:
  67. 2023-08-22 08:17:18,694:INFO: shap: Not installed
  68. 2023-08-22 08:17:18,694:INFO: interpret: Not installed
  69. 2023-08-22 08:17:18,694:INFO: umap: Not installed
  70. 2023-08-22 08:17:18,694:INFO: pandas_profiling: Not installed
  71. 2023-08-22 08:17:18,694:INFO: explainerdashboard: Not installed
  72. 2023-08-22 08:17:18,694:INFO: autoviz: Not installed
  73. 2023-08-22 08:17:18,694:INFO: fairlearn: Not installed
  74. 2023-08-22 08:17:18,694:INFO: deepchecks: Not installed
  75. 2023-08-22 08:17:18,694:INFO: xgboost: Not installed
  76. 2023-08-22 08:17:18,694:INFO: catboost: Not installed
  77. 2023-08-22 08:17:18,694:INFO: kmodes: Not installed
  78. 2023-08-22 08:17:18,694:INFO: mlxtend: Not installed
  79. 2023-08-22 08:17:18,694:INFO: statsforecast: Not installed
  80. 2023-08-22 08:17:18,694:INFO: tune_sklearn: Not installed
  81. 2023-08-22 08:17:18,694:INFO: ray: Not installed
  82. 2023-08-22 08:17:18,694:INFO: hyperopt: Not installed
  83. 2023-08-22 08:17:18,694:INFO: optuna: Not installed
  84. 2023-08-22 08:17:18,694:INFO: skopt: Not installed
  85. 2023-08-22 08:17:18,694:INFO: mlflow: 2.6.0
  86. 2023-08-22 08:17:18,694:INFO: gradio: Not installed
  87. 2023-08-22 08:17:18,694:INFO: fastapi: Not installed
  88. 2023-08-22 08:17:18,694:INFO: uvicorn: Not installed
  89. 2023-08-22 08:17:18,694:INFO: m2cgen: Not installed
  90. 2023-08-22 08:17:18,694:INFO: evidently: Not installed
  91. 2023-08-22 08:17:18,694:INFO: fugue: Not installed
  92. 2023-08-22 08:17:18,694:INFO: streamlit: Not installed
  93. 2023-08-22 08:17:18,694:INFO: prophet: Not installed
  94. 2023-08-22 08:17:18,694:INFO:None
  95. 2023-08-22 08:17:18,694:INFO:Set up data.
  96. 2023-08-22 08:17:18,725:INFO:Set up train/test split.
  97. 2023-08-22 08:17:18,835:INFO:Set up index.
  98. 2023-08-22 08:17:18,835:INFO:Set up folding strategy.
  99. 2023-08-22 08:17:18,835:INFO:Assigning column types.
  100. 2023-08-22 08:17:18,851:INFO:Engine successfully changes for model 'lr' to 'sklearn'.
  101. 2023-08-22 08:17:18,897:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  102. 2023-08-22 08:17:18,897:INFO:Engine for model 'rbfsvm' has not been set explicitly, hence returning None.
  103. 2023-08-22 08:17:18,937:WARNING:
  104. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  105. Alternately, you can install this by running `pip install pycaret[models]`
  106. 2023-08-22 08:17:18,938:WARNING:
  107. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  108. Alternately, you can install this by running `pip install pycaret[models]`
  109. 2023-08-22 08:17:19,050:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
  110. 2023-08-22 08:17:19,065:INFO:Engine for model 'rbfsvm' has not been set explicitly, hence returning None.
  111. 2023-08-22 08:17:19,121:WARNING:
  112. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  113. Alternately, you can install this by running `pip install pycaret[models]`
  114. 2023-08-22 08:17:19,121:WARNING:
  115. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  116. Alternately, you can install this by running `pip install pycaret[models]`
  117. 2023-08-22 08:17:19,121:INFO:Engine successfully changes for model 'knn' to 'sklearn'.
  118. 2023-08-22 08:17:19,200:INFO:Engine for model 'rbfsvm' has not been set explicitly, hence returning None.
  119. 2023-08-22 08:17:19,216:WARNING:
  120. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  121. Alternately, you can install this by running `pip install pycaret[models]`
  122. 2023-08-22 08:17:19,216:WARNING:
  123. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  124. Alternately, you can install this by running `pip install pycaret[models]`
  125. 2023-08-22 08:17:19,288:INFO:Engine for model 'rbfsvm' has not been set explicitly, hence returning None.
  126. 2023-08-22 08:17:19,334:WARNING:
  127. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  128. Alternately, you can install this by running `pip install pycaret[models]`
  129. 2023-08-22 08:17:19,334:WARNING:
  130. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  131. Alternately, you can install this by running `pip install pycaret[models]`
  132. 2023-08-22 08:17:19,334:INFO:Engine successfully changes for model 'rbfsvm' to 'sklearn'.
  133. 2023-08-22 08:17:19,428:WARNING:
  134. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  135. Alternately, you can install this by running `pip install pycaret[models]`
  136. 2023-08-22 08:17:19,428:WARNING:
  137. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  138. Alternately, you can install this by running `pip install pycaret[models]`
  139. 2023-08-22 08:17:19,536:WARNING:
  140. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  141. Alternately, you can install this by running `pip install pycaret[models]`
  142. 2023-08-22 08:17:19,536:WARNING:
  143. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  144. Alternately, you can install this by running `pip install pycaret[models]`
  145. 2023-08-22 08:17:19,536:INFO:Preparing preprocessing pipeline...
  146. 2023-08-22 08:17:19,536:INFO:Set up label encoding.
  147. 2023-08-22 08:17:19,536:INFO:Set up simple imputation.
  148. 2023-08-22 08:17:19,536:INFO:Set up encoding of ordinal features.
  149. 2023-08-22 08:17:19,551:INFO:Set up encoding of categorical features.
  150. 2023-08-22 08:17:20,136:INFO:Finished creating preprocessing pipeline.
  151. 2023-08-22 08:17:20,302:INFO:Pipeline: Pipeline(memory=FastMemory(location=C:\Users\prvzs\AppData\Local\Temp\joblib),
  152. steps=[('label_encoding',
  153. TransformerWrapperWithInverse(exclude=None, include=None,
  154. transformer=LabelEncoder())),
  155. ('numerical_imputer',
  156. TransformerWrapper(exclude=None,
  157. include=['SeniorCitizen', 'tenure',
  158. 'MonthlyCharges'],
  159. transformer=SimpleImputer(add_indicator=False,
  160. copy=True,
  161. f...
  162. handle_unknown='value',
  163. return_df=True,
  164. use_cat_names=True,
  165. verbose=0))),
  166. ('rest_encoding',
  167. TransformerWrapper(exclude=None, include=['TotalCharges'],
  168. transformer=TargetEncoder(cols=['TotalCharges'],
  169. drop_invariant=False,
  170. handle_missing='return_nan',
  171. handle_unknown='value',
  172. hierarchy=None,
  173. min_samples_leaf=20,
  174. return_df=True,
  175. smoothing=10,
  176. verbose=0)))],
  177. verbose=False)
  178. 2023-08-22 08:17:20,303:INFO:Creating final display dataframe.
  179. 2023-08-22 08:17:21,272:INFO:Setup _display_container: Description Value
  180. 0 Session id 123
  181. 1 Target Churn
  182. 2 Target type Binary
  183. 3 Target mapping No: 0, Yes: 1
  184. 4 Original data shape (7043, 21)
  185. 5 Transformed data shape (7043, 41)
  186. 6 Transformed train set shape (4930, 41)
  187. 7 Transformed test set shape (2113, 41)
  188. 8 Ignore features 1
  189. 9 Ordinal features 5
  190. 10 Numeric features 3
  191. 11 Categorical features 16
  192. 12 Preprocess True
  193. 13 Imputation type simple
  194. 14 Numeric imputation mean
  195. 15 Categorical imputation mode
  196. 16 Maximum one-hot encoding 25
  197. 17 Encoding method None
  198. 18 Fold Generator StratifiedKFold
  199. 19 Fold Number 10
  200. 20 CPU Jobs -1
  201. 21 Use GPU False
  202. 22 Log Experiment MlflowLogger
  203. 23 Experiment Name churn1
  204. 24 USI 8b34
  205. 2023-08-22 08:17:21,404:WARNING:
  206. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  207. Alternately, you can install this by running `pip install pycaret[models]`
  208. 2023-08-22 08:17:21,404:WARNING:
  209. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  210. Alternately, you can install this by running `pip install pycaret[models]`
  211. 2023-08-22 08:17:21,479:WARNING:
  212. 'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
  213. Alternately, you can install this by running `pip install pycaret[models]`
  214. 2023-08-22 08:17:21,480:WARNING:
  215. 'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
  216. Alternately, you can install this by running `pip install pycaret[models]`
  217. 2023-08-22 08:17:21,480:INFO:Logging experiment in loggers
  218. 2023-08-22 08:17:22,122:INFO:SubProcess save_model() called ==================================
  219. 2023-08-22 08:17:22,404:INFO:Initializing save_model()
  220. 2023-08-22 08:17:22,404:INFO:save_model(model=Pipeline(memory=FastMemory(location=C:\Users\prvzs\AppData\Local\Temp\joblib),
  221. steps=[('label_encoding',
  222. TransformerWrapperWithInverse(exclude=None, include=None,
  223. transformer=LabelEncoder())),
  224. ('numerical_imputer',
  225. TransformerWrapper(exclude=None,
  226. include=['SeniorCitizen', 'tenure',
  227. 'MonthlyCharges'],
  228. transformer=SimpleImputer(add_indicator=False,
  229. copy=True,
  230. f...
  231. handle_unknown='value',
  232. return_df=True,
  233. use_cat_names=True,
  234. verbose=0))),
  235. ('rest_encoding',
  236. TransformerWrapper(exclude=None, include=['TotalCharges'],
  237. transformer=TargetEncoder(cols=['TotalCharges'],
  238. drop_invariant=False,
  239. handle_missing='return_nan',
  240. handle_unknown='value',
  241. hierarchy=None,
  242. min_samples_leaf=20,
  243. return_df=True,
  244. smoothing=10,
  245. verbose=0)))],
  246. verbose=False), model_name=C:\Users\prvzs\AppData\Local\Temp\tmp9kz26lsy\Transformation Pipeline, prep_pipe_=Pipeline(memory=FastMemory(location=C:\Users\prvzs\AppData\Local\Temp\joblib),
  247. steps=[('label_encoding',
  248. TransformerWrapperWithInverse(exclude=None, include=None,
  249. transformer=LabelEncoder())),
  250. ('numerical_imputer',
  251. TransformerWrapper(exclude=None,
  252. include=['SeniorCitizen', 'tenure',
  253. 'MonthlyCharges'],
  254. transformer=SimpleImputer(add_indicator=False,
  255. copy=True,
  256. f...
  257. handle_unknown='value',
  258. return_df=True,
  259. use_cat_names=True,
  260. verbose=0))),
  261. ('rest_encoding',
  262. TransformerWrapper(exclude=None, include=['TotalCharges'],
  263. transformer=TargetEncoder(cols=['TotalCharges'],
  264. drop_invariant=False,
  265. handle_missing='return_nan',
  266. handle_unknown='value',
  267. hierarchy=None,
  268. min_samples_leaf=20,
  269. return_df=True,
  270. smoothing=10,
  271. verbose=0)))],
  272. verbose=False), verbose=False, use_case=MLUsecase.CLASSIFICATION, kwargs={})
  273. 2023-08-22 08:17:22,404:INFO:Adding model into prep_pipe
  274. 2023-08-22 08:17:22,404:WARNING:Only Model saved as it was a pipeline.
  275. 2023-08-22 08:17:22,451:INFO:C:\Users\prvzs\AppData\Local\Temp\tmp9kz26lsy\Transformation Pipeline.pkl saved in current working directory
  276. 2023-08-22 08:17:22,608:INFO:Pipeline(memory=FastMemory(location=C:\Users\prvzs\AppData\Local\Temp\joblib),
  277. steps=[('label_encoding',
  278. TransformerWrapperWithInverse(exclude=None, include=None,
  279. transformer=LabelEncoder())),
  280. ('numerical_imputer',
  281. TransformerWrapper(exclude=None,
  282. include=['SeniorCitizen', 'tenure',
  283. 'MonthlyCharges'],
  284. transformer=SimpleImputer(add_indicator=False,
  285. copy=True,
  286. f...
  287. handle_unknown='value',
  288. return_df=True,
  289. use_cat_names=True,
  290. verbose=0))),
  291. ('rest_encoding',
  292. TransformerWrapper(exclude=None, include=['TotalCharges'],
  293. transformer=TargetEncoder(cols=['TotalCharges'],
  294. drop_invariant=False,
  295. handle_missing='return_nan',
  296. handle_unknown='value',
  297. hierarchy=None,
  298. min_samples_leaf=20,
  299. return_df=True,
  300. smoothing=10,
  301. verbose=0)))],
  302. verbose=False)
  303. 2023-08-22 08:17:22,608:INFO:save_model() successfully completed......................................
  304. 2023-08-22 08:17:22,703:INFO:SubProcess save_model() end ==================================
  305. 2023-08-22 08:17:22,705:INFO:setup() successfully completed in 3.1s...............
  306. 2023-08-22 08:18:12,462:INFO:Initializing compare_models()
  307. 2023-08-22 08:18:12,462:INFO:compare_models(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, include=None, fold=None, round=4, cross_validation=True, sort=Accuracy, n_select=1, budget_time=None, turbo=True, errors=ignore, fit_kwargs=None, groups=None, experiment_custom_tags=None, probability_threshold=None, verbose=True, parallel=None, caller_params={'self': <pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, 'include': None, 'exclude': None, 'fold': None, 'round': 4, 'cross_validation': True, 'sort': 'Accuracy', 'n_select': 1, 'budget_time': None, 'turbo': True, 'errors': 'ignore', 'fit_kwargs': None, 'groups': None, 'experiment_custom_tags': None, 'probability_threshold': None, 'engine': None, 'verbose': True, 'parallel': None, '__class__': <class 'pycaret.classification.oop.ClassificationExperiment'>}, exclude=None)
  308. 2023-08-22 08:18:12,462:INFO:Checking exceptions
  309. 2023-08-22 08:18:12,473:INFO:Preparing display monitor
  310. 2023-08-22 08:18:12,536:INFO:Initializing Logistic Regression
  311. 2023-08-22 08:18:12,537:INFO:Total runtime is 1.6709168752034504e-05 minutes
  312. 2023-08-22 08:18:12,546:INFO:SubProcess create_model() called ==================================
  313. 2023-08-22 08:18:12,547:INFO:Initializing create_model()
  314. 2023-08-22 08:18:12,547:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=lr, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  315. 2023-08-22 08:18:12,547:INFO:Checking exceptions
  316. 2023-08-22 08:18:12,548:INFO:Importing libraries
  317. 2023-08-22 08:18:12,548:INFO:Copying training dataset
  318. 2023-08-22 08:18:12,555:INFO:Defining folds
  319. 2023-08-22 08:18:12,555:INFO:Declaring metric variables
  320. 2023-08-22 08:18:12,561:INFO:Importing untrained model
  321. 2023-08-22 08:18:12,567:INFO:Logistic Regression Imported successfully
  322. 2023-08-22 08:18:12,592:INFO:Starting cross validation
  323. 2023-08-22 08:18:12,600:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  324. 2023-08-22 08:18:21,216:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:231: UserWarning: Persisting input arguments took 0.60s to run.
  325. If this happens often in your code, it can cause performance problems
  326. (results will be correct in all cases).
  327. The reason for this is probably some large input arguments for a wrapped
  328. function (e.g. large strings).
  329. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  330. example so that they can fix the problem.
  331. fitted_transformer = self._memory_fit(
  332. 2023-08-22 08:18:21,649:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
  333. STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
  334. Increase the number of iterations (max_iter) or scale the data as shown in:
  335. https://scikit-learn.org/stable/modules/preprocessing.html
  336. Please also refer to the documentation for alternative solver options:
  337. https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  338. n_iter_i = _check_optimize_result(
  339. 2023-08-22 08:18:21,784:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
  340. STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
  341. Increase the number of iterations (max_iter) or scale the data as shown in:
  342. https://scikit-learn.org/stable/modules/preprocessing.html
  343. Please also refer to the documentation for alternative solver options:
  344. https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  345. n_iter_i = _check_optimize_result(
  346. 2023-08-22 08:18:22,145:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
  347. STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
  348. Increase the number of iterations (max_iter) or scale the data as shown in:
  349. https://scikit-learn.org/stable/modules/preprocessing.html
  350. Please also refer to the documentation for alternative solver options:
  351. https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  352. n_iter_i = _check_optimize_result(
  353. 2023-08-22 08:18:22,175:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
  354. STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
  355. Increase the number of iterations (max_iter) or scale the data as shown in:
  356. https://scikit-learn.org/stable/modules/preprocessing.html
  357. Please also refer to the documentation for alternative solver options:
  358. https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  359. n_iter_i = _check_optimize_result(
  360. 2023-08-22 08:18:22,459:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
  361. STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
  362. Increase the number of iterations (max_iter) or scale the data as shown in:
  363. https://scikit-learn.org/stable/modules/preprocessing.html
  364. Please also refer to the documentation for alternative solver options:
  365. https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  366. n_iter_i = _check_optimize_result(
  367. 2023-08-22 08:18:23,826:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.81s to run.
  368. If this happens often in your code, it can cause performance problems
  369. (results will be correct in all cases).
  370. The reason for this is probably some large input arguments for a wrapped
  371. function (e.g. large strings).
  372. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  373. example so that they can fix the problem.
  374. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  375. 2023-08-22 08:18:23,842:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.91s to run.
  376. If this happens often in your code, it can cause performance problems
  377. (results will be correct in all cases).
  378. The reason for this is probably some large input arguments for a wrapped
  379. function (e.g. large strings).
  380. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  381. example so that they can fix the problem.
  382. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  383. 2023-08-22 08:18:23,873:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.63s to run.
  384. If this happens often in your code, it can cause performance problems
  385. (results will be correct in all cases).
  386. The reason for this is probably some large input arguments for a wrapped
  387. function (e.g. large strings).
  388. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  389. example so that they can fix the problem.
  390. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  391. 2023-08-22 08:18:23,920:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.59s to run.
  392. If this happens often in your code, it can cause performance problems
  393. (results will be correct in all cases).
  394. The reason for this is probably some large input arguments for a wrapped
  395. function (e.g. large strings).
  396. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  397. example so that they can fix the problem.
  398. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  399. 2023-08-22 08:18:23,967:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.57s to run.
  400. If this happens often in your code, it can cause performance problems
  401. (results will be correct in all cases).
  402. The reason for this is probably some large input arguments for a wrapped
  403. function (e.g. large strings).
  404. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  405. example so that they can fix the problem.
  406. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  407. 2023-08-22 08:18:24,042:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.50s to run.
  408. If this happens often in your code, it can cause performance problems
  409. (results will be correct in all cases).
  410. The reason for this is probably some large input arguments for a wrapped
  411. function (e.g. large strings).
  412. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  413. example so that they can fix the problem.
  414. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  415. 2023-08-22 08:18:24,074:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.51s to run.
  416. If this happens often in your code, it can cause performance problems
  417. (results will be correct in all cases).
  418. The reason for this is probably some large input arguments for a wrapped
  419. function (e.g. large strings).
  420. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  421. example so that they can fix the problem.
  422. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  423. 2023-08-22 08:18:24,555:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.69s to run.
  424. If this happens often in your code, it can cause performance problems
  425. (results will be correct in all cases).
  426. The reason for this is probably some large input arguments for a wrapped
  427. function (e.g. large strings).
  428. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  429. example so that they can fix the problem.
  430. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  431. 2023-08-22 08:18:25,925:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
  432. STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
  433. Increase the number of iterations (max_iter) or scale the data as shown in:
  434. https://scikit-learn.org/stable/modules/preprocessing.html
  435. Please also refer to the documentation for alternative solver options:
  436. https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  437. n_iter_i = _check_optimize_result(
  438. 2023-08-22 08:18:25,964:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
  439. STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
  440. Increase the number of iterations (max_iter) or scale the data as shown in:
  441. https://scikit-learn.org/stable/modules/preprocessing.html
  442. Please also refer to the documentation for alternative solver options:
  443. https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  444. n_iter_i = _check_optimize_result(
  445. 2023-08-22 08:18:26,923:INFO:Calculating mean and std
  446. 2023-08-22 08:18:26,924:INFO:Creating metrics dataframe
  447. 2023-08-22 08:18:27,012:INFO:Uploading results into container
  448. 2023-08-22 08:18:27,013:INFO:Uploading model into container now
  449. 2023-08-22 08:18:27,013:INFO:_master_model_container: 1
  450. 2023-08-22 08:18:27,013:INFO:_display_container: 2
  451. 2023-08-22 08:18:27,014:INFO:LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
  452. intercept_scaling=1, l1_ratio=None, max_iter=1000,
  453. multi_class='auto', n_jobs=None, penalty='l2',
  454. random_state=123, solver='lbfgs', tol=0.0001, verbose=0,
  455. warm_start=False)
  456. 2023-08-22 08:18:27,015:INFO:create_model() successfully completed......................................
  457. 2023-08-22 08:18:27,124:INFO:SubProcess create_model() end ==================================
  458. 2023-08-22 08:18:27,124:INFO:Creating metrics dataframe
  459. 2023-08-22 08:18:27,159:INFO:Initializing K Neighbors Classifier
  460. 2023-08-22 08:18:27,159:INFO:Total runtime is 0.24371531407038372 minutes
  461. 2023-08-22 08:18:27,168:INFO:SubProcess create_model() called ==================================
  462. 2023-08-22 08:18:27,169:INFO:Initializing create_model()
  463. 2023-08-22 08:18:27,169:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=knn, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  464. 2023-08-22 08:18:27,169:INFO:Checking exceptions
  465. 2023-08-22 08:18:27,169:INFO:Importing libraries
  466. 2023-08-22 08:18:27,170:INFO:Copying training dataset
  467. 2023-08-22 08:18:27,191:INFO:Defining folds
  468. 2023-08-22 08:18:27,192:INFO:Declaring metric variables
  469. 2023-08-22 08:18:27,195:INFO:Importing untrained model
  470. 2023-08-22 08:18:27,211:INFO:K Neighbors Classifier Imported successfully
  471. 2023-08-22 08:18:27,227:INFO:Starting cross validation
  472. 2023-08-22 08:18:27,227:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  473. 2023-08-22 08:18:29,574:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.53s to run.
  474. If this happens often in your code, it can cause performance problems
  475. (results will be correct in all cases).
  476. The reason for this is probably some large input arguments for a wrapped
  477. function (e.g. large strings).
  478. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  479. example so that they can fix the problem.
  480. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  481. 2023-08-22 08:18:29,617:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.51s to run.
  482. If this happens often in your code, it can cause performance problems
  483. (results will be correct in all cases).
  484. The reason for this is probably some large input arguments for a wrapped
  485. function (e.g. large strings).
  486. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  487. example so that they can fix the problem.
  488. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  489. 2023-08-22 08:18:29,684:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.51s to run.
  490. If this happens often in your code, it can cause performance problems
  491. (results will be correct in all cases).
  492. The reason for this is probably some large input arguments for a wrapped
  493. function (e.g. large strings).
  494. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  495. example so that they can fix the problem.
  496. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  497. 2023-08-22 08:18:29,700:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.50s to run.
  498. If this happens often in your code, it can cause performance problems
  499. (results will be correct in all cases).
  500. The reason for this is probably some large input arguments for a wrapped
  501. function (e.g. large strings).
  502. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  503. example so that they can fix the problem.
  504. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  505. 2023-08-22 08:18:29,748:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.53s to run.
  506. If this happens often in your code, it can cause performance problems
  507. (results will be correct in all cases).
  508. The reason for this is probably some large input arguments for a wrapped
  509. function (e.g. large strings).
  510. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  511. example so that they can fix the problem.
  512. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  513. 2023-08-22 08:18:32,318:INFO:Calculating mean and std
  514. 2023-08-22 08:18:32,321:INFO:Creating metrics dataframe
  515. 2023-08-22 08:18:32,430:INFO:Uploading results into container
  516. 2023-08-22 08:18:32,432:INFO:Uploading model into container now
  517. 2023-08-22 08:18:32,433:INFO:_master_model_container: 2
  518. 2023-08-22 08:18:32,434:INFO:_display_container: 2
  519. 2023-08-22 08:18:32,435:INFO:KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
  520. metric_params=None, n_jobs=-1, n_neighbors=5, p=2,
  521. weights='uniform')
  522. 2023-08-22 08:18:32,435:INFO:create_model() successfully completed......................................
  523. 2023-08-22 08:18:32,535:INFO:SubProcess create_model() end ==================================
  524. 2023-08-22 08:18:32,535:INFO:Creating metrics dataframe
  525. 2023-08-22 08:18:32,566:INFO:Initializing Naive Bayes
  526. 2023-08-22 08:18:32,566:INFO:Total runtime is 0.33383540709813436 minutes
  527. 2023-08-22 08:18:32,585:INFO:SubProcess create_model() called ==================================
  528. 2023-08-22 08:18:32,585:INFO:Initializing create_model()
  529. 2023-08-22 08:18:32,585:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=nb, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  530. 2023-08-22 08:18:32,585:INFO:Checking exceptions
  531. 2023-08-22 08:18:32,585:INFO:Importing libraries
  532. 2023-08-22 08:18:32,585:INFO:Copying training dataset
  533. 2023-08-22 08:18:32,604:INFO:Defining folds
  534. 2023-08-22 08:18:32,605:INFO:Declaring metric variables
  535. 2023-08-22 08:18:32,617:INFO:Importing untrained model
  536. 2023-08-22 08:18:32,624:INFO:Naive Bayes Imported successfully
  537. 2023-08-22 08:18:32,647:INFO:Starting cross validation
  538. 2023-08-22 08:18:32,652:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  539. 2023-08-22 08:18:34,518:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.52s to run.
  540. If this happens often in your code, it can cause performance problems
  541. (results will be correct in all cases).
  542. The reason for this is probably some large input arguments for a wrapped
  543. function (e.g. large strings).
  544. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  545. example so that they can fix the problem.
  546. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  547. 2023-08-22 08:18:35,054:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.56s to run.
  548. If this happens often in your code, it can cause performance problems
  549. (results will be correct in all cases).
  550. The reason for this is probably some large input arguments for a wrapped
  551. function (e.g. large strings).
  552. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  553. example so that they can fix the problem.
  554. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  555. 2023-08-22 08:18:35,085:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.51s to run.
  556. If this happens often in your code, it can cause performance problems
  557. (results will be correct in all cases).
  558. The reason for this is probably some large input arguments for a wrapped
  559. function (e.g. large strings).
  560. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  561. example so that they can fix the problem.
  562. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  563. 2023-08-22 08:18:36,437:INFO:Calculating mean and std
  564. 2023-08-22 08:18:36,437:INFO:Creating metrics dataframe
  565. 2023-08-22 08:18:36,547:INFO:Uploading results into container
  566. 2023-08-22 08:18:36,547:INFO:Uploading model into container now
  567. 2023-08-22 08:18:36,547:INFO:_master_model_container: 3
  568. 2023-08-22 08:18:36,547:INFO:_display_container: 2
  569. 2023-08-22 08:18:36,547:INFO:GaussianNB(priors=None, var_smoothing=1e-09)
  570. 2023-08-22 08:18:36,547:INFO:create_model() successfully completed......................................
  571. 2023-08-22 08:18:36,665:INFO:SubProcess create_model() end ==================================
  572. 2023-08-22 08:18:36,665:INFO:Creating metrics dataframe
  573. 2023-08-22 08:18:36,684:INFO:Initializing Decision Tree Classifier
  574. 2023-08-22 08:18:36,684:INFO:Total runtime is 0.4024739702542623 minutes
  575. 2023-08-22 08:18:36,691:INFO:SubProcess create_model() called ==================================
  576. 2023-08-22 08:18:36,692:INFO:Initializing create_model()
  577. 2023-08-22 08:18:36,692:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=dt, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  578. 2023-08-22 08:18:36,693:INFO:Checking exceptions
  579. 2023-08-22 08:18:36,693:INFO:Importing libraries
  580. 2023-08-22 08:18:36,693:INFO:Copying training dataset
  581. 2023-08-22 08:18:36,708:INFO:Defining folds
  582. 2023-08-22 08:18:36,709:INFO:Declaring metric variables
  583. 2023-08-22 08:18:36,719:INFO:Importing untrained model
  584. 2023-08-22 08:18:36,729:INFO:Decision Tree Classifier Imported successfully
  585. 2023-08-22 08:18:36,743:INFO:Starting cross validation
  586. 2023-08-22 08:18:36,749:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  587. 2023-08-22 08:18:38,820:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.72s to run.
  588. If this happens often in your code, it can cause performance problems
  589. (results will be correct in all cases).
  590. The reason for this is probably some large input arguments for a wrapped
  591. function (e.g. large strings).
  592. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  593. example so that they can fix the problem.
  594. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  595. 2023-08-22 08:18:38,833:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.67s to run.
  596. If this happens often in your code, it can cause performance problems
  597. (results will be correct in all cases).
  598. The reason for this is probably some large input arguments for a wrapped
  599. function (e.g. large strings).
  600. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  601. example so that they can fix the problem.
  602. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  603. 2023-08-22 08:18:38,864:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.65s to run.
  604. If this happens often in your code, it can cause performance problems
  605. (results will be correct in all cases).
  606. The reason for this is probably some large input arguments for a wrapped
  607. function (e.g. large strings).
  608. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  609. example so that they can fix the problem.
  610. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  611. 2023-08-22 08:18:38,879:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.60s to run.
  612. If this happens often in your code, it can cause performance problems
  613. (results will be correct in all cases).
  614. The reason for this is probably some large input arguments for a wrapped
  615. function (e.g. large strings).
  616. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  617. example so that they can fix the problem.
  618. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  619. 2023-08-22 08:18:38,883:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.66s to run.
  620. If this happens often in your code, it can cause performance problems
  621. (results will be correct in all cases).
  622. The reason for this is probably some large input arguments for a wrapped
  623. function (e.g. large strings).
  624. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  625. example so that they can fix the problem.
  626. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  627. 2023-08-22 08:18:38,887:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.63s to run.
  628. If this happens often in your code, it can cause performance problems
  629. (results will be correct in all cases).
  630. The reason for this is probably some large input arguments for a wrapped
  631. function (e.g. large strings).
  632. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  633. example so that they can fix the problem.
  634. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  635. 2023-08-22 08:18:39,223:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.68s to run.
  636. If this happens often in your code, it can cause performance problems
  637. (results will be correct in all cases).
  638. The reason for this is probably some large input arguments for a wrapped
  639. function (e.g. large strings).
  640. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  641. example so that they can fix the problem.
  642. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  643. 2023-08-22 08:18:39,400:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.73s to run.
  644. If this happens often in your code, it can cause performance problems
  645. (results will be correct in all cases).
  646. The reason for this is probably some large input arguments for a wrapped
  647. function (e.g. large strings).
  648. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  649. example so that they can fix the problem.
  650. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  651. 2023-08-22 08:18:40,619:INFO:Calculating mean and std
  652. 2023-08-22 08:18:40,624:INFO:Creating metrics dataframe
  653. 2023-08-22 08:18:40,773:INFO:Uploading results into container
  654. 2023-08-22 08:18:40,775:INFO:Uploading model into container now
  655. 2023-08-22 08:18:40,777:INFO:_master_model_container: 4
  656. 2023-08-22 08:18:40,778:INFO:_display_container: 2
  657. 2023-08-22 08:18:40,779:INFO:DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
  658. max_depth=None, max_features=None, max_leaf_nodes=None,
  659. min_impurity_decrease=0.0, min_samples_leaf=1,
  660. min_samples_split=2, min_weight_fraction_leaf=0.0,
  661. random_state=123, splitter='best')
  662. 2023-08-22 08:18:40,780:INFO:create_model() successfully completed......................................
  663. 2023-08-22 08:18:40,933:INFO:SubProcess create_model() end ==================================
  664. 2023-08-22 08:18:40,934:INFO:Creating metrics dataframe
  665. 2023-08-22 08:18:40,981:INFO:Initializing SVM - Linear Kernel
  666. 2023-08-22 08:18:40,982:INFO:Total runtime is 0.47409364382425945 minutes
  667. 2023-08-22 08:18:40,991:INFO:SubProcess create_model() called ==================================
  668. 2023-08-22 08:18:40,992:INFO:Initializing create_model()
  669. 2023-08-22 08:18:40,993:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=svm, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  670. 2023-08-22 08:18:40,993:INFO:Checking exceptions
  671. 2023-08-22 08:18:40,993:INFO:Importing libraries
  672. 2023-08-22 08:18:40,993:INFO:Copying training dataset
  673. 2023-08-22 08:18:41,012:INFO:Defining folds
  674. 2023-08-22 08:18:41,014:INFO:Declaring metric variables
  675. 2023-08-22 08:18:41,027:INFO:Importing untrained model
  676. 2023-08-22 08:18:41,044:INFO:SVM - Linear Kernel Imported successfully
  677. 2023-08-22 08:18:41,068:INFO:Starting cross validation
  678. 2023-08-22 08:18:41,080:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  679. 2023-08-22 08:18:43,507:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.60s to run.
  680. If this happens often in your code, it can cause performance problems
  681. (results will be correct in all cases).
  682. The reason for this is probably some large input arguments for a wrapped
  683. function (e.g. large strings).
  684. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  685. example so that they can fix the problem.
  686. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  687. 2023-08-22 08:18:43,520:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.59s to run.
  688. If this happens often in your code, it can cause performance problems
  689. (results will be correct in all cases).
  690. The reason for this is probably some large input arguments for a wrapped
  691. function (e.g. large strings).
  692. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  693. example so that they can fix the problem.
  694. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  695. 2023-08-22 08:18:43,523:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  696. Traceback (most recent call last):
  697. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  698. return cache[method]
  699. KeyError: 'predict_proba'
  700. During handling of the above exception, another exception occurred:
  701. Traceback (most recent call last):
  702. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  703. return super()._score(
  704. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  705. y_pred = method_caller(clf, "predict_proba", X)
  706. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  707. result = getattr(estimator, method)(*args, **kwargs)
  708. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  709. return getattr(self._final_estimator, name)
  710. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  711. if not self.check(obj):
  712. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  713. raise AttributeError(
  714. AttributeError: probability estimates are not available for loss='hinge'
  715. warnings.warn(
  716. 2023-08-22 08:18:43,533:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  717. Traceback (most recent call last):
  718. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  719. return cache[method]
  720. KeyError: 'predict_proba'
  721. During handling of the above exception, another exception occurred:
  722. Traceback (most recent call last):
  723. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  724. return super()._score(
  725. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  726. y_pred = method_caller(clf, "predict_proba", X)
  727. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  728. result = getattr(estimator, method)(*args, **kwargs)
  729. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  730. return getattr(self._final_estimator, name)
  731. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  732. if not self.check(obj):
  733. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  734. raise AttributeError(
  735. AttributeError: probability estimates are not available for loss='hinge'
  736. warnings.warn(
  737. 2023-08-22 08:18:43,617:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.59s to run.
  738. If this happens often in your code, it can cause performance problems
  739. (results will be correct in all cases).
  740. The reason for this is probably some large input arguments for a wrapped
  741. function (e.g. large strings).
  742. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  743. example so that they can fix the problem.
  744. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  745. 2023-08-22 08:18:43,632:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  746. Traceback (most recent call last):
  747. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  748. return cache[method]
  749. KeyError: 'predict_proba'
  750. During handling of the above exception, another exception occurred:
  751. Traceback (most recent call last):
  752. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  753. return super()._score(
  754. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  755. y_pred = method_caller(clf, "predict_proba", X)
  756. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  757. result = getattr(estimator, method)(*args, **kwargs)
  758. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  759. return getattr(self._final_estimator, name)
  760. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  761. if not self.check(obj):
  762. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  763. raise AttributeError(
  764. AttributeError: probability estimates are not available for loss='hinge'
  765. warnings.warn(
  766. 2023-08-22 08:18:43,732:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.54s to run.
  767. If this happens often in your code, it can cause performance problems
  768. (results will be correct in all cases).
  769. The reason for this is probably some large input arguments for a wrapped
  770. function (e.g. large strings).
  771. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  772. example so that they can fix the problem.
  773. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  774. 2023-08-22 08:18:43,747:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  775. Traceback (most recent call last):
  776. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  777. return cache[method]
  778. KeyError: 'predict_proba'
  779. During handling of the above exception, another exception occurred:
  780. Traceback (most recent call last):
  781. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  782. return super()._score(
  783. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  784. y_pred = method_caller(clf, "predict_proba", X)
  785. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  786. result = getattr(estimator, method)(*args, **kwargs)
  787. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  788. return getattr(self._final_estimator, name)
  789. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  790. if not self.check(obj):
  791. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  792. raise AttributeError(
  793. AttributeError: probability estimates are not available for loss='hinge'
  794. warnings.warn(
  795. 2023-08-22 08:18:43,752:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.56s to run.
  796. If this happens often in your code, it can cause performance problems
  797. (results will be correct in all cases).
  798. The reason for this is probably some large input arguments for a wrapped
  799. function (e.g. large strings).
  800. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  801. example so that they can fix the problem.
  802. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  803. 2023-08-22 08:18:43,767:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  804. Traceback (most recent call last):
  805. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  806. return cache[method]
  807. KeyError: 'predict_proba'
  808. During handling of the above exception, another exception occurred:
  809. Traceback (most recent call last):
  810. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  811. return super()._score(
  812. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  813. y_pred = method_caller(clf, "predict_proba", X)
  814. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  815. result = getattr(estimator, method)(*args, **kwargs)
  816. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  817. return getattr(self._final_estimator, name)
  818. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  819. if not self.check(obj):
  820. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  821. raise AttributeError(
  822. AttributeError: probability estimates are not available for loss='hinge'
  823. warnings.warn(
  824. 2023-08-22 08:18:43,919:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.60s to run.
  825. If this happens often in your code, it can cause performance problems
  826. (results will be correct in all cases).
  827. The reason for this is probably some large input arguments for a wrapped
  828. function (e.g. large strings).
  829. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  830. example so that they can fix the problem.
  831. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  832. 2023-08-22 08:18:43,936:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  833. Traceback (most recent call last):
  834. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  835. return cache[method]
  836. KeyError: 'predict_proba'
  837. During handling of the above exception, another exception occurred:
  838. Traceback (most recent call last):
  839. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  840. return super()._score(
  841. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  842. y_pred = method_caller(clf, "predict_proba", X)
  843. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  844. result = getattr(estimator, method)(*args, **kwargs)
  845. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  846. return getattr(self._final_estimator, name)
  847. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  848. if not self.check(obj):
  849. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  850. raise AttributeError(
  851. AttributeError: probability estimates are not available for loss='hinge'
  852. warnings.warn(
  853. 2023-08-22 08:18:43,942:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.62s to run.
  854. If this happens often in your code, it can cause performance problems
  855. (results will be correct in all cases).
  856. The reason for this is probably some large input arguments for a wrapped
  857. function (e.g. large strings).
  858. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  859. example so that they can fix the problem.
  860. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  861. 2023-08-22 08:18:43,955:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  862. Traceback (most recent call last):
  863. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  864. return cache[method]
  865. KeyError: 'predict_proba'
  866. During handling of the above exception, another exception occurred:
  867. Traceback (most recent call last):
  868. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  869. return super()._score(
  870. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  871. y_pred = method_caller(clf, "predict_proba", X)
  872. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  873. result = getattr(estimator, method)(*args, **kwargs)
  874. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  875. return getattr(self._final_estimator, name)
  876. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  877. if not self.check(obj):
  878. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  879. raise AttributeError(
  880. AttributeError: probability estimates are not available for loss='hinge'
  881. warnings.warn(
  882. 2023-08-22 08:18:43,961:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  883. _warn_prf(average, modifier, msg_start, len(result))
  884. 2023-08-22 08:18:43,989:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.66s to run.
  885. If this happens often in your code, it can cause performance problems
  886. (results will be correct in all cases).
  887. The reason for this is probably some large input arguments for a wrapped
  888. function (e.g. large strings).
  889. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  890. example so that they can fix the problem.
  891. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  892. 2023-08-22 08:18:44,002:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  893. Traceback (most recent call last):
  894. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  895. return cache[method]
  896. KeyError: 'predict_proba'
  897. During handling of the above exception, another exception occurred:
  898. Traceback (most recent call last):
  899. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  900. return super()._score(
  901. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  902. y_pred = method_caller(clf, "predict_proba", X)
  903. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  904. result = getattr(estimator, method)(*args, **kwargs)
  905. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  906. return getattr(self._final_estimator, name)
  907. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  908. if not self.check(obj):
  909. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  910. raise AttributeError(
  911. AttributeError: probability estimates are not available for loss='hinge'
  912. warnings.warn(
  913. 2023-08-22 08:18:44,999:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  914. Traceback (most recent call last):
  915. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  916. return cache[method]
  917. KeyError: 'predict_proba'
  918. During handling of the above exception, another exception occurred:
  919. Traceback (most recent call last):
  920. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  921. return super()._score(
  922. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  923. y_pred = method_caller(clf, "predict_proba", X)
  924. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  925. result = getattr(estimator, method)(*args, **kwargs)
  926. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  927. return getattr(self._final_estimator, name)
  928. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  929. if not self.check(obj):
  930. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  931. raise AttributeError(
  932. AttributeError: probability estimates are not available for loss='hinge'
  933. warnings.warn(
  934. 2023-08-22 08:18:44,999:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  935. _warn_prf(average, modifier, msg_start, len(result))
  936. 2023-08-22 08:18:45,215:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  937. Traceback (most recent call last):
  938. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  939. return cache[method]
  940. KeyError: 'predict_proba'
  941. During handling of the above exception, another exception occurred:
  942. Traceback (most recent call last):
  943. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  944. return super()._score(
  945. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  946. y_pred = method_caller(clf, "predict_proba", X)
  947. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  948. result = getattr(estimator, method)(*args, **kwargs)
  949. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  950. return getattr(self._final_estimator, name)
  951. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\utils\_available_if.py", line 32, in __get__
  952. if not self.check(obj):
  953. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\linear_model\_stochastic_gradient.py", line 1235, in _check_proba
  954. raise AttributeError(
  955. AttributeError: probability estimates are not available for loss='hinge'
  956. warnings.warn(
  957. 2023-08-22 08:18:45,238:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  958. _warn_prf(average, modifier, msg_start, len(result))
  959. 2023-08-22 08:18:45,247:INFO:Calculating mean and std
  960. 2023-08-22 08:18:45,247:INFO:Creating metrics dataframe
  961. 2023-08-22 08:18:45,398:INFO:Uploading results into container
  962. 2023-08-22 08:18:45,408:INFO:Uploading model into container now
  963. 2023-08-22 08:18:45,410:INFO:_master_model_container: 5
  964. 2023-08-22 08:18:45,411:INFO:_display_container: 2
  965. 2023-08-22 08:18:45,412:INFO:SGDClassifier(alpha=0.0001, average=False, class_weight=None,
  966. early_stopping=False, epsilon=0.1, eta0=0.001, fit_intercept=True,
  967. l1_ratio=0.15, learning_rate='optimal', loss='hinge',
  968. max_iter=1000, n_iter_no_change=5, n_jobs=-1, penalty='l2',
  969. power_t=0.5, random_state=123, shuffle=True, tol=0.001,
  970. validation_fraction=0.1, verbose=0, warm_start=False)
  971. 2023-08-22 08:18:45,412:INFO:create_model() successfully completed......................................
  972. 2023-08-22 08:18:45,524:INFO:SubProcess create_model() end ==================================
  973. 2023-08-22 08:18:45,524:INFO:Creating metrics dataframe
  974. 2023-08-22 08:18:45,629:INFO:Initializing Ridge Classifier
  975. 2023-08-22 08:18:45,630:INFO:Total runtime is 0.5515607277552287 minutes
  976. 2023-08-22 08:18:45,639:INFO:SubProcess create_model() called ==================================
  977. 2023-08-22 08:18:45,644:INFO:Initializing create_model()
  978. 2023-08-22 08:18:45,644:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=ridge, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  979. 2023-08-22 08:18:45,645:INFO:Checking exceptions
  980. 2023-08-22 08:18:45,645:INFO:Importing libraries
  981. 2023-08-22 08:18:45,645:INFO:Copying training dataset
  982. 2023-08-22 08:18:45,664:INFO:Defining folds
  983. 2023-08-22 08:18:45,664:INFO:Declaring metric variables
  984. 2023-08-22 08:18:45,676:INFO:Importing untrained model
  985. 2023-08-22 08:18:45,686:INFO:Ridge Classifier Imported successfully
  986. 2023-08-22 08:18:45,714:INFO:Starting cross validation
  987. 2023-08-22 08:18:45,720:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  988. 2023-08-22 08:18:47,650:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.53s to run.
  989. If this happens often in your code, it can cause performance problems
  990. (results will be correct in all cases).
  991. The reason for this is probably some large input arguments for a wrapped
  992. function (e.g. large strings).
  993. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  994. example so that they can fix the problem.
  995. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  996. 2023-08-22 08:18:47,650:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.55s to run.
  997. If this happens often in your code, it can cause performance problems
  998. (results will be correct in all cases).
  999. The reason for this is probably some large input arguments for a wrapped
  1000. function (e.g. large strings).
  1001. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1002. example so that they can fix the problem.
  1003. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1004. 2023-08-22 08:18:47,650:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1005. Traceback (most recent call last):
  1006. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1007. return cache[method]
  1008. KeyError: 'predict_proba'
  1009. During handling of the above exception, another exception occurred:
  1010. Traceback (most recent call last):
  1011. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1012. return super()._score(
  1013. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1014. y_pred = method_caller(clf, "predict_proba", X)
  1015. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1016. result = getattr(estimator, method)(*args, **kwargs)
  1017. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1018. return getattr(self._final_estimator, name)
  1019. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1020. warnings.warn(
  1021. 2023-08-22 08:18:47,665:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1022. Traceback (most recent call last):
  1023. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1024. return cache[method]
  1025. KeyError: 'predict_proba'
  1026. During handling of the above exception, another exception occurred:
  1027. Traceback (most recent call last):
  1028. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1029. return super()._score(
  1030. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1031. y_pred = method_caller(clf, "predict_proba", X)
  1032. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1033. result = getattr(estimator, method)(*args, **kwargs)
  1034. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1035. return getattr(self._final_estimator, name)
  1036. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1037. warnings.warn(
  1038. 2023-08-22 08:18:47,743:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.52s to run.
  1039. If this happens often in your code, it can cause performance problems
  1040. (results will be correct in all cases).
  1041. The reason for this is probably some large input arguments for a wrapped
  1042. function (e.g. large strings).
  1043. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1044. example so that they can fix the problem.
  1045. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1046. 2023-08-22 08:18:47,753:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1047. Traceback (most recent call last):
  1048. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1049. return cache[method]
  1050. KeyError: 'predict_proba'
  1051. During handling of the above exception, another exception occurred:
  1052. Traceback (most recent call last):
  1053. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1054. return super()._score(
  1055. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1056. y_pred = method_caller(clf, "predict_proba", X)
  1057. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1058. result = getattr(estimator, method)(*args, **kwargs)
  1059. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1060. return getattr(self._final_estimator, name)
  1061. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1062. warnings.warn(
  1063. 2023-08-22 08:18:47,762:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.52s to run.
  1064. If this happens often in your code, it can cause performance problems
  1065. (results will be correct in all cases).
  1066. The reason for this is probably some large input arguments for a wrapped
  1067. function (e.g. large strings).
  1068. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1069. example so that they can fix the problem.
  1070. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1071. 2023-08-22 08:18:47,766:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.51s to run.
  1072. If this happens often in your code, it can cause performance problems
  1073. (results will be correct in all cases).
  1074. The reason for this is probably some large input arguments for a wrapped
  1075. function (e.g. large strings).
  1076. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1077. example so that they can fix the problem.
  1078. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1079. 2023-08-22 08:18:47,768:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1080. Traceback (most recent call last):
  1081. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1082. return cache[method]
  1083. KeyError: 'predict_proba'
  1084. During handling of the above exception, another exception occurred:
  1085. Traceback (most recent call last):
  1086. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1087. return super()._score(
  1088. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1089. y_pred = method_caller(clf, "predict_proba", X)
  1090. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1091. result = getattr(estimator, method)(*args, **kwargs)
  1092. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1093. return getattr(self._final_estimator, name)
  1094. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1095. warnings.warn(
  1096. 2023-08-22 08:18:47,772:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1097. Traceback (most recent call last):
  1098. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1099. return cache[method]
  1100. KeyError: 'predict_proba'
  1101. During handling of the above exception, another exception occurred:
  1102. Traceback (most recent call last):
  1103. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1104. return super()._score(
  1105. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1106. y_pred = method_caller(clf, "predict_proba", X)
  1107. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1108. result = getattr(estimator, method)(*args, **kwargs)
  1109. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1110. return getattr(self._final_estimator, name)
  1111. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1112. warnings.warn(
  1113. 2023-08-22 08:18:47,815:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.52s to run.
  1114. If this happens often in your code, it can cause performance problems
  1115. (results will be correct in all cases).
  1116. The reason for this is probably some large input arguments for a wrapped
  1117. function (e.g. large strings).
  1118. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1119. example so that they can fix the problem.
  1120. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1121. 2023-08-22 08:18:47,815:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1122. Traceback (most recent call last):
  1123. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1124. return cache[method]
  1125. KeyError: 'predict_proba'
  1126. During handling of the above exception, another exception occurred:
  1127. Traceback (most recent call last):
  1128. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1129. return super()._score(
  1130. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1131. y_pred = method_caller(clf, "predict_proba", X)
  1132. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1133. result = getattr(estimator, method)(*args, **kwargs)
  1134. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1135. return getattr(self._final_estimator, name)
  1136. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1137. warnings.warn(
  1138. 2023-08-22 08:18:48,242:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.81s to run.
  1139. If this happens often in your code, it can cause performance problems
  1140. (results will be correct in all cases).
  1141. The reason for this is probably some large input arguments for a wrapped
  1142. function (e.g. large strings).
  1143. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1144. example so that they can fix the problem.
  1145. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1146. 2023-08-22 08:18:48,242:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.80s to run.
  1147. If this happens often in your code, it can cause performance problems
  1148. (results will be correct in all cases).
  1149. The reason for this is probably some large input arguments for a wrapped
  1150. function (e.g. large strings).
  1151. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1152. example so that they can fix the problem.
  1153. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1154. 2023-08-22 08:18:48,253:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1155. Traceback (most recent call last):
  1156. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1157. return cache[method]
  1158. KeyError: 'predict_proba'
  1159. During handling of the above exception, another exception occurred:
  1160. Traceback (most recent call last):
  1161. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1162. return super()._score(
  1163. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1164. y_pred = method_caller(clf, "predict_proba", X)
  1165. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1166. result = getattr(estimator, method)(*args, **kwargs)
  1167. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1168. return getattr(self._final_estimator, name)
  1169. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1170. warnings.warn(
  1171. 2023-08-22 08:18:49,171:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1172. Traceback (most recent call last):
  1173. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1174. return cache[method]
  1175. KeyError: 'predict_proba'
  1176. During handling of the above exception, another exception occurred:
  1177. Traceback (most recent call last):
  1178. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1179. return super()._score(
  1180. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1181. y_pred = method_caller(clf, "predict_proba", X)
  1182. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1183. result = getattr(estimator, method)(*args, **kwargs)
  1184. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1185. return getattr(self._final_estimator, name)
  1186. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1187. warnings.warn(
  1188. 2023-08-22 08:18:49,193:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py:138: FitFailedWarning: Metric 'make_scorer(roc_auc_score, needs_proba=True, error_score=0.0, average=weighted, multi_class=ovr)' failed and error score 0.0 has been returned instead. If this is a custom metric, this usually means that the error is in the metric code. Full exception below:
  1189. Traceback (most recent call last):
  1190. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 76, in _cached_call
  1191. return cache[method]
  1192. KeyError: 'predict_proba'
  1193. During handling of the above exception, another exception occurred:
  1194. Traceback (most recent call last):
  1195. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\metrics.py", line 130, in _score
  1196. return super()._score(
  1197. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 316, in _score
  1198. y_pred = method_caller(clf, "predict_proba", X)
  1199. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_scorer.py", line 78, in _cached_call
  1200. result = getattr(estimator, method)(*args, **kwargs)
  1201. File "C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py", line 121, in __getattr__
  1202. return getattr(self._final_estimator, name)
  1203. AttributeError: 'RidgeClassifier' object has no attribute 'predict_proba'
  1204. warnings.warn(
  1205. 2023-08-22 08:18:49,329:INFO:Calculating mean and std
  1206. 2023-08-22 08:18:49,332:INFO:Creating metrics dataframe
  1207. 2023-08-22 08:18:49,626:INFO:Uploading results into container
  1208. 2023-08-22 08:18:49,628:INFO:Uploading model into container now
  1209. 2023-08-22 08:18:49,630:INFO:_master_model_container: 6
  1210. 2023-08-22 08:18:49,631:INFO:_display_container: 2
  1211. 2023-08-22 08:18:49,632:INFO:RidgeClassifier(alpha=1.0, class_weight=None, copy_X=True, fit_intercept=True,
  1212. max_iter=None, positive=False, random_state=123, solver='auto',
  1213. tol=0.0001)
  1214. 2023-08-22 08:18:49,633:INFO:create_model() successfully completed......................................
  1215. 2023-08-22 08:18:49,766:INFO:SubProcess create_model() end ==================================
  1216. 2023-08-22 08:18:49,766:INFO:Creating metrics dataframe
  1217. 2023-08-22 08:18:49,785:INFO:Initializing Random Forest Classifier
  1218. 2023-08-22 08:18:49,785:INFO:Total runtime is 0.6208162307739258 minutes
  1219. 2023-08-22 08:18:49,794:INFO:SubProcess create_model() called ==================================
  1220. 2023-08-22 08:18:49,794:INFO:Initializing create_model()
  1221. 2023-08-22 08:18:49,795:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=rf, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  1222. 2023-08-22 08:18:49,796:INFO:Checking exceptions
  1223. 2023-08-22 08:18:49,796:INFO:Importing libraries
  1224. 2023-08-22 08:18:49,796:INFO:Copying training dataset
  1225. 2023-08-22 08:18:49,811:INFO:Defining folds
  1226. 2023-08-22 08:18:49,811:INFO:Declaring metric variables
  1227. 2023-08-22 08:18:49,822:INFO:Importing untrained model
  1228. 2023-08-22 08:18:49,835:INFO:Random Forest Classifier Imported successfully
  1229. 2023-08-22 08:18:49,852:INFO:Starting cross validation
  1230. 2023-08-22 08:18:49,861:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  1231. 2023-08-22 08:18:51,876:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:238: UserWarning: Persisting input arguments took 1.12s to run.
  1232. If this happens often in your code, it can cause performance problems
  1233. (results will be correct in all cases).
  1234. The reason for this is probably some large input arguments for a wrapped
  1235. function (e.g. large strings).
  1236. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1237. example so that they can fix the problem.
  1238. X, y = self._memory_transform(
  1239. 2023-08-22 08:18:52,067:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:238: UserWarning: Persisting input arguments took 1.29s to run.
  1240. If this happens often in your code, it can cause performance problems
  1241. (results will be correct in all cases).
  1242. The reason for this is probably some large input arguments for a wrapped
  1243. function (e.g. large strings).
  1244. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1245. example so that they can fix the problem.
  1246. X, y = self._memory_transform(
  1247. 2023-08-22 08:18:52,798:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:260: UserWarning: Persisting input arguments took 0.53s to run.
  1248. If this happens often in your code, it can cause performance problems
  1249. (results will be correct in all cases).
  1250. The reason for this is probably some large input arguments for a wrapped
  1251. function (e.g. large strings).
  1252. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1253. example so that they can fix the problem.
  1254. fitted_estimator = self._memory_fit(
  1255. 2023-08-22 08:18:52,889:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:260: UserWarning: Persisting input arguments took 0.56s to run.
  1256. If this happens often in your code, it can cause performance problems
  1257. (results will be correct in all cases).
  1258. The reason for this is probably some large input arguments for a wrapped
  1259. function (e.g. large strings).
  1260. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1261. example so that they can fix the problem.
  1262. fitted_estimator = self._memory_fit(
  1263. 2023-08-22 08:18:53,121:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:260: UserWarning: Persisting input arguments took 0.63s to run.
  1264. If this happens often in your code, it can cause performance problems
  1265. (results will be correct in all cases).
  1266. The reason for this is probably some large input arguments for a wrapped
  1267. function (e.g. large strings).
  1268. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1269. example so that they can fix the problem.
  1270. fitted_estimator = self._memory_fit(
  1271. 2023-08-22 08:18:53,503:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:260: UserWarning: Persisting input arguments took 0.90s to run.
  1272. If this happens often in your code, it can cause performance problems
  1273. (results will be correct in all cases).
  1274. The reason for this is probably some large input arguments for a wrapped
  1275. function (e.g. large strings).
  1276. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1277. example so that they can fix the problem.
  1278. fitted_estimator = self._memory_fit(
  1279. 2023-08-22 08:18:54,652:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.72s to run.
  1280. If this happens often in your code, it can cause performance problems
  1281. (results will be correct in all cases).
  1282. The reason for this is probably some large input arguments for a wrapped
  1283. function (e.g. large strings).
  1284. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1285. example so that they can fix the problem.
  1286. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1287. 2023-08-22 08:18:54,668:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.78s to run.
  1288. If this happens often in your code, it can cause performance problems
  1289. (results will be correct in all cases).
  1290. The reason for this is probably some large input arguments for a wrapped
  1291. function (e.g. large strings).
  1292. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1293. example so that they can fix the problem.
  1294. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1295. 2023-08-22 08:18:54,683:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.76s to run.
  1296. If this happens often in your code, it can cause performance problems
  1297. (results will be correct in all cases).
  1298. The reason for this is probably some large input arguments for a wrapped
  1299. function (e.g. large strings).
  1300. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1301. example so that they can fix the problem.
  1302. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1303. 2023-08-22 08:18:54,833:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.83s to run.
  1304. If this happens often in your code, it can cause performance problems
  1305. (results will be correct in all cases).
  1306. The reason for this is probably some large input arguments for a wrapped
  1307. function (e.g. large strings).
  1308. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1309. example so that they can fix the problem.
  1310. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1311. 2023-08-22 08:18:54,883:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.82s to run.
  1312. If this happens often in your code, it can cause performance problems
  1313. (results will be correct in all cases).
  1314. The reason for this is probably some large input arguments for a wrapped
  1315. function (e.g. large strings).
  1316. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1317. example so that they can fix the problem.
  1318. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1319. 2023-08-22 08:18:55,071:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.86s to run.
  1320. If this happens often in your code, it can cause performance problems
  1321. (results will be correct in all cases).
  1322. The reason for this is probably some large input arguments for a wrapped
  1323. function (e.g. large strings).
  1324. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1325. example so that they can fix the problem.
  1326. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1327. 2023-08-22 08:18:55,584:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.96s to run.
  1328. If this happens often in your code, it can cause performance problems
  1329. (results will be correct in all cases).
  1330. The reason for this is probably some large input arguments for a wrapped
  1331. function (e.g. large strings).
  1332. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1333. example so that they can fix the problem.
  1334. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1335. 2023-08-22 08:18:55,849:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.07s to run.
  1336. If this happens often in your code, it can cause performance problems
  1337. (results will be correct in all cases).
  1338. The reason for this is probably some large input arguments for a wrapped
  1339. function (e.g. large strings).
  1340. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1341. example so that they can fix the problem.
  1342. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1343. 2023-08-22 08:18:59,283:INFO:Calculating mean and std
  1344. 2023-08-22 08:18:59,287:INFO:Creating metrics dataframe
  1345. 2023-08-22 08:18:59,581:INFO:Uploading results into container
  1346. 2023-08-22 08:18:59,581:INFO:Uploading model into container now
  1347. 2023-08-22 08:18:59,581:INFO:_master_model_container: 7
  1348. 2023-08-22 08:18:59,581:INFO:_display_container: 2
  1349. 2023-08-22 08:18:59,581:INFO:RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
  1350. criterion='gini', max_depth=None, max_features='sqrt',
  1351. max_leaf_nodes=None, max_samples=None,
  1352. min_impurity_decrease=0.0, min_samples_leaf=1,
  1353. min_samples_split=2, min_weight_fraction_leaf=0.0,
  1354. n_estimators=100, n_jobs=-1, oob_score=False,
  1355. random_state=123, verbose=0, warm_start=False)
  1356. 2023-08-22 08:18:59,581:INFO:create_model() successfully completed......................................
  1357. 2023-08-22 08:18:59,705:INFO:SubProcess create_model() end ==================================
  1358. 2023-08-22 08:18:59,706:INFO:Creating metrics dataframe
  1359. 2023-08-22 08:18:59,737:INFO:Initializing Quadratic Discriminant Analysis
  1360. 2023-08-22 08:18:59,738:INFO:Total runtime is 0.7867085218429566 minutes
  1361. 2023-08-22 08:18:59,746:INFO:SubProcess create_model() called ==================================
  1362. 2023-08-22 08:18:59,746:INFO:Initializing create_model()
  1363. 2023-08-22 08:18:59,746:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=qda, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  1364. 2023-08-22 08:18:59,746:INFO:Checking exceptions
  1365. 2023-08-22 08:18:59,746:INFO:Importing libraries
  1366. 2023-08-22 08:18:59,746:INFO:Copying training dataset
  1367. 2023-08-22 08:18:59,759:INFO:Defining folds
  1368. 2023-08-22 08:18:59,759:INFO:Declaring metric variables
  1369. 2023-08-22 08:18:59,770:INFO:Importing untrained model
  1370. 2023-08-22 08:18:59,770:INFO:Quadratic Discriminant Analysis Imported successfully
  1371. 2023-08-22 08:18:59,785:INFO:Starting cross validation
  1372. 2023-08-22 08:18:59,801:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  1373. 2023-08-22 08:19:00,625:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1374. warnings.warn("Variables are collinear")
  1375. 2023-08-22 08:19:00,655:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1376. warnings.warn("Variables are collinear")
  1377. 2023-08-22 08:19:00,776:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1378. warnings.warn("Variables are collinear")
  1379. 2023-08-22 08:19:00,807:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1380. warnings.warn("Variables are collinear")
  1381. 2023-08-22 08:19:00,815:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1382. warnings.warn("Variables are collinear")
  1383. 2023-08-22 08:19:00,820:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1384. warnings.warn("Variables are collinear")
  1385. 2023-08-22 08:19:00,826:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1386. warnings.warn("Variables are collinear")
  1387. 2023-08-22 08:19:01,262:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:238: UserWarning: Persisting input arguments took 0.68s to run.
  1388. If this happens often in your code, it can cause performance problems
  1389. (results will be correct in all cases).
  1390. The reason for this is probably some large input arguments for a wrapped
  1391. function (e.g. large strings).
  1392. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1393. example so that they can fix the problem.
  1394. X, y = self._memory_transform(
  1395. 2023-08-22 08:19:01,583:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1396. warnings.warn("Variables are collinear")
  1397. 2023-08-22 08:19:01,968:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.69s to run.
  1398. If this happens often in your code, it can cause performance problems
  1399. (results will be correct in all cases).
  1400. The reason for this is probably some large input arguments for a wrapped
  1401. function (e.g. large strings).
  1402. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1403. example so that they can fix the problem.
  1404. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1405. 2023-08-22 08:19:01,968:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.70s to run.
  1406. If this happens often in your code, it can cause performance problems
  1407. (results will be correct in all cases).
  1408. The reason for this is probably some large input arguments for a wrapped
  1409. function (e.g. large strings).
  1410. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1411. example so that they can fix the problem.
  1412. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1413. 2023-08-22 08:19:02,094:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.78s to run.
  1414. If this happens often in your code, it can cause performance problems
  1415. (results will be correct in all cases).
  1416. The reason for this is probably some large input arguments for a wrapped
  1417. function (e.g. large strings).
  1418. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1419. example so that they can fix the problem.
  1420. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1421. 2023-08-22 08:19:02,159:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.77s to run.
  1422. If this happens often in your code, it can cause performance problems
  1423. (results will be correct in all cases).
  1424. The reason for this is probably some large input arguments for a wrapped
  1425. function (e.g. large strings).
  1426. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1427. example so that they can fix the problem.
  1428. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1429. 2023-08-22 08:19:02,173:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.79s to run.
  1430. If this happens often in your code, it can cause performance problems
  1431. (results will be correct in all cases).
  1432. The reason for this is probably some large input arguments for a wrapped
  1433. function (e.g. large strings).
  1434. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1435. example so that they can fix the problem.
  1436. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1437. 2023-08-22 08:19:02,188:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.78s to run.
  1438. If this happens often in your code, it can cause performance problems
  1439. (results will be correct in all cases).
  1440. The reason for this is probably some large input arguments for a wrapped
  1441. function (e.g. large strings).
  1442. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1443. example so that they can fix the problem.
  1444. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1445. 2023-08-22 08:19:02,298:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.84s to run.
  1446. If this happens often in your code, it can cause performance problems
  1447. (results will be correct in all cases).
  1448. The reason for this is probably some large input arguments for a wrapped
  1449. function (e.g. large strings).
  1450. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1451. example so that they can fix the problem.
  1452. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1453. 2023-08-22 08:19:03,147:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.90s to run.
  1454. If this happens often in your code, it can cause performance problems
  1455. (results will be correct in all cases).
  1456. The reason for this is probably some large input arguments for a wrapped
  1457. function (e.g. large strings).
  1458. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1459. example so that they can fix the problem.
  1460. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1461. 2023-08-22 08:19:03,448:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1462. warnings.warn("Variables are collinear")
  1463. 2023-08-22 08:19:03,542:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\discriminant_analysis.py:926: UserWarning: Variables are collinear
  1464. warnings.warn("Variables are collinear")
  1465. 2023-08-22 08:19:04,609:INFO:Calculating mean and std
  1466. 2023-08-22 08:19:04,609:INFO:Creating metrics dataframe
  1467. 2023-08-22 08:19:04,865:INFO:Uploading results into container
  1468. 2023-08-22 08:19:04,865:INFO:Uploading model into container now
  1469. 2023-08-22 08:19:04,865:INFO:_master_model_container: 8
  1470. 2023-08-22 08:19:04,865:INFO:_display_container: 2
  1471. 2023-08-22 08:19:04,865:INFO:QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0,
  1472. store_covariance=False, tol=0.0001)
  1473. 2023-08-22 08:19:04,865:INFO:create_model() successfully completed......................................
  1474. 2023-08-22 08:19:04,971:INFO:SubProcess create_model() end ==================================
  1475. 2023-08-22 08:19:04,971:INFO:Creating metrics dataframe
  1476. 2023-08-22 08:19:04,986:INFO:Initializing Ada Boost Classifier
  1477. 2023-08-22 08:19:04,986:INFO:Total runtime is 0.8741718888282777 minutes
  1478. 2023-08-22 08:19:04,986:INFO:SubProcess create_model() called ==================================
  1479. 2023-08-22 08:19:04,986:INFO:Initializing create_model()
  1480. 2023-08-22 08:19:04,986:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=ada, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  1481. 2023-08-22 08:19:04,986:INFO:Checking exceptions
  1482. 2023-08-22 08:19:04,986:INFO:Importing libraries
  1483. 2023-08-22 08:19:04,986:INFO:Copying training dataset
  1484. 2023-08-22 08:19:05,002:INFO:Defining folds
  1485. 2023-08-22 08:19:05,002:INFO:Declaring metric variables
  1486. 2023-08-22 08:19:05,017:INFO:Importing untrained model
  1487. 2023-08-22 08:19:05,017:INFO:Ada Boost Classifier Imported successfully
  1488. 2023-08-22 08:19:05,049:INFO:Starting cross validation
  1489. 2023-08-22 08:19:05,049:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  1490. 2023-08-22 08:19:08,291:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.66s to run.
  1491. If this happens often in your code, it can cause performance problems
  1492. (results will be correct in all cases).
  1493. The reason for this is probably some large input arguments for a wrapped
  1494. function (e.g. large strings).
  1495. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1496. example so that they can fix the problem.
  1497. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1498. 2023-08-22 08:19:08,338:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.71s to run.
  1499. If this happens often in your code, it can cause performance problems
  1500. (results will be correct in all cases).
  1501. The reason for this is probably some large input arguments for a wrapped
  1502. function (e.g. large strings).
  1503. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1504. example so that they can fix the problem.
  1505. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1506. 2023-08-22 08:19:08,371:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.72s to run.
  1507. If this happens often in your code, it can cause performance problems
  1508. (results will be correct in all cases).
  1509. The reason for this is probably some large input arguments for a wrapped
  1510. function (e.g. large strings).
  1511. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1512. example so that they can fix the problem.
  1513. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1514. 2023-08-22 08:19:08,416:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.68s to run.
  1515. If this happens often in your code, it can cause performance problems
  1516. (results will be correct in all cases).
  1517. The reason for this is probably some large input arguments for a wrapped
  1518. function (e.g. large strings).
  1519. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1520. example so that they can fix the problem.
  1521. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1522. 2023-08-22 08:19:08,589:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.69s to run.
  1523. If this happens often in your code, it can cause performance problems
  1524. (results will be correct in all cases).
  1525. The reason for this is probably some large input arguments for a wrapped
  1526. function (e.g. large strings).
  1527. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1528. example so that they can fix the problem.
  1529. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1530. 2023-08-22 08:19:08,636:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.74s to run.
  1531. If this happens often in your code, it can cause performance problems
  1532. (results will be correct in all cases).
  1533. The reason for this is probably some large input arguments for a wrapped
  1534. function (e.g. large strings).
  1535. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1536. example so that they can fix the problem.
  1537. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1538. 2023-08-22 08:19:08,793:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.68s to run.
  1539. If this happens often in your code, it can cause performance problems
  1540. (results will be correct in all cases).
  1541. The reason for this is probably some large input arguments for a wrapped
  1542. function (e.g. large strings).
  1543. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1544. example so that they can fix the problem.
  1545. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1546. 2023-08-22 08:19:11,518:INFO:Calculating mean and std
  1547. 2023-08-22 08:19:11,518:INFO:Creating metrics dataframe
  1548. 2023-08-22 08:19:11,727:INFO:Uploading results into container
  1549. 2023-08-22 08:19:11,727:INFO:Uploading model into container now
  1550. 2023-08-22 08:19:11,727:INFO:_master_model_container: 9
  1551. 2023-08-22 08:19:11,727:INFO:_display_container: 2
  1552. 2023-08-22 08:19:11,727:INFO:AdaBoostClassifier(algorithm='SAMME.R', base_estimator='deprecated',
  1553. estimator=None, learning_rate=1.0, n_estimators=50,
  1554. random_state=123)
  1555. 2023-08-22 08:19:11,727:INFO:create_model() successfully completed......................................
  1556. 2023-08-22 08:19:11,806:INFO:SubProcess create_model() end ==================================
  1557. 2023-08-22 08:19:11,806:INFO:Creating metrics dataframe
  1558. 2023-08-22 08:19:11,830:INFO:Initializing Gradient Boosting Classifier
  1559. 2023-08-22 08:19:11,830:INFO:Total runtime is 0.9882330099741619 minutes
  1560. 2023-08-22 08:19:11,837:INFO:SubProcess create_model() called ==================================
  1561. 2023-08-22 08:19:11,838:INFO:Initializing create_model()
  1562. 2023-08-22 08:19:11,838:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=gbc, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  1563. 2023-08-22 08:19:11,838:INFO:Checking exceptions
  1564. 2023-08-22 08:19:11,838:INFO:Importing libraries
  1565. 2023-08-22 08:19:11,838:INFO:Copying training dataset
  1566. 2023-08-22 08:19:11,846:INFO:Defining folds
  1567. 2023-08-22 08:19:11,846:INFO:Declaring metric variables
  1568. 2023-08-22 08:19:11,861:INFO:Importing untrained model
  1569. 2023-08-22 08:19:11,877:INFO:Gradient Boosting Classifier Imported successfully
  1570. 2023-08-22 08:19:11,893:INFO:Starting cross validation
  1571. 2023-08-22 08:19:11,909:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  1572. 2023-08-22 08:19:15,569:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.64s to run.
  1573. If this happens often in your code, it can cause performance problems
  1574. (results will be correct in all cases).
  1575. The reason for this is probably some large input arguments for a wrapped
  1576. function (e.g. large strings).
  1577. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1578. example so that they can fix the problem.
  1579. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1580. 2023-08-22 08:19:15,600:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.61s to run.
  1581. If this happens often in your code, it can cause performance problems
  1582. (results will be correct in all cases).
  1583. The reason for this is probably some large input arguments for a wrapped
  1584. function (e.g. large strings).
  1585. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1586. example so that they can fix the problem.
  1587. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1588. 2023-08-22 08:19:15,616:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.61s to run.
  1589. If this happens often in your code, it can cause performance problems
  1590. (results will be correct in all cases).
  1591. The reason for this is probably some large input arguments for a wrapped
  1592. function (e.g. large strings).
  1593. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1594. example so that they can fix the problem.
  1595. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1596. 2023-08-22 08:19:15,632:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.60s to run.
  1597. If this happens often in your code, it can cause performance problems
  1598. (results will be correct in all cases).
  1599. The reason for this is probably some large input arguments for a wrapped
  1600. function (e.g. large strings).
  1601. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1602. example so that they can fix the problem.
  1603. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1604. 2023-08-22 08:19:15,663:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.60s to run.
  1605. If this happens often in your code, it can cause performance problems
  1606. (results will be correct in all cases).
  1607. The reason for this is probably some large input arguments for a wrapped
  1608. function (e.g. large strings).
  1609. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1610. example so that they can fix the problem.
  1611. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1612. 2023-08-22 08:19:15,695:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.60s to run.
  1613. If this happens often in your code, it can cause performance problems
  1614. (results will be correct in all cases).
  1615. The reason for this is probably some large input arguments for a wrapped
  1616. function (e.g. large strings).
  1617. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1618. example so that they can fix the problem.
  1619. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1620. 2023-08-22 08:19:15,726:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.59s to run.
  1621. If this happens often in your code, it can cause performance problems
  1622. (results will be correct in all cases).
  1623. The reason for this is probably some large input arguments for a wrapped
  1624. function (e.g. large strings).
  1625. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1626. example so that they can fix the problem.
  1627. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1628. 2023-08-22 08:19:15,742:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.61s to run.
  1629. If this happens often in your code, it can cause performance problems
  1630. (results will be correct in all cases).
  1631. The reason for this is probably some large input arguments for a wrapped
  1632. function (e.g. large strings).
  1633. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1634. example so that they can fix the problem.
  1635. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1636. 2023-08-22 08:19:19,092:INFO:Calculating mean and std
  1637. 2023-08-22 08:19:19,096:INFO:Creating metrics dataframe
  1638. 2023-08-22 08:19:19,375:INFO:Uploading results into container
  1639. 2023-08-22 08:19:19,375:INFO:Uploading model into container now
  1640. 2023-08-22 08:19:19,391:INFO:_master_model_container: 10
  1641. 2023-08-22 08:19:19,391:INFO:_display_container: 2
  1642. 2023-08-22 08:19:19,393:INFO:GradientBoostingClassifier(ccp_alpha=0.0, criterion='friedman_mse', init=None,
  1643. learning_rate=0.1, loss='log_loss', max_depth=3,
  1644. max_features=None, max_leaf_nodes=None,
  1645. min_impurity_decrease=0.0, min_samples_leaf=1,
  1646. min_samples_split=2, min_weight_fraction_leaf=0.0,
  1647. n_estimators=100, n_iter_no_change=None,
  1648. random_state=123, subsample=1.0, tol=0.0001,
  1649. validation_fraction=0.1, verbose=0,
  1650. warm_start=False)
  1651. 2023-08-22 08:19:19,393:INFO:create_model() successfully completed......................................
  1652. 2023-08-22 08:19:19,485:INFO:SubProcess create_model() end ==================================
  1653. 2023-08-22 08:19:19,485:INFO:Creating metrics dataframe
  1654. 2023-08-22 08:19:19,517:INFO:Initializing Linear Discriminant Analysis
  1655. 2023-08-22 08:19:19,517:INFO:Total runtime is 1.1163523276646932 minutes
  1656. 2023-08-22 08:19:19,533:INFO:SubProcess create_model() called ==================================
  1657. 2023-08-22 08:19:19,533:INFO:Initializing create_model()
  1658. 2023-08-22 08:19:19,533:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=lda, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  1659. 2023-08-22 08:19:19,533:INFO:Checking exceptions
  1660. 2023-08-22 08:19:19,533:INFO:Importing libraries
  1661. 2023-08-22 08:19:19,533:INFO:Copying training dataset
  1662. 2023-08-22 08:19:19,548:INFO:Defining folds
  1663. 2023-08-22 08:19:19,548:INFO:Declaring metric variables
  1664. 2023-08-22 08:19:19,564:INFO:Importing untrained model
  1665. 2023-08-22 08:19:19,580:INFO:Linear Discriminant Analysis Imported successfully
  1666. 2023-08-22 08:19:19,596:INFO:Starting cross validation
  1667. 2023-08-22 08:19:19,611:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  1668. 2023-08-22 08:19:21,306:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.58s to run.
  1669. If this happens often in your code, it can cause performance problems
  1670. (results will be correct in all cases).
  1671. The reason for this is probably some large input arguments for a wrapped
  1672. function (e.g. large strings).
  1673. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1674. example so that they can fix the problem.
  1675. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1676. 2023-08-22 08:19:21,321:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.56s to run.
  1677. If this happens often in your code, it can cause performance problems
  1678. (results will be correct in all cases).
  1679. The reason for this is probably some large input arguments for a wrapped
  1680. function (e.g. large strings).
  1681. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1682. example so that they can fix the problem.
  1683. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1684. 2023-08-22 08:19:21,335:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.58s to run.
  1685. If this happens often in your code, it can cause performance problems
  1686. (results will be correct in all cases).
  1687. The reason for this is probably some large input arguments for a wrapped
  1688. function (e.g. large strings).
  1689. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1690. example so that they can fix the problem.
  1691. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1692. 2023-08-22 08:19:21,360:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.52s to run.
  1693. If this happens often in your code, it can cause performance problems
  1694. (results will be correct in all cases).
  1695. The reason for this is probably some large input arguments for a wrapped
  1696. function (e.g. large strings).
  1697. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1698. example so that they can fix the problem.
  1699. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1700. 2023-08-22 08:19:21,360:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.52s to run.
  1701. If this happens often in your code, it can cause performance problems
  1702. (results will be correct in all cases).
  1703. The reason for this is probably some large input arguments for a wrapped
  1704. function (e.g. large strings).
  1705. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1706. example so that they can fix the problem.
  1707. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1708. 2023-08-22 08:19:21,423:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.53s to run.
  1709. If this happens often in your code, it can cause performance problems
  1710. (results will be correct in all cases).
  1711. The reason for this is probably some large input arguments for a wrapped
  1712. function (e.g. large strings).
  1713. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1714. example so that they can fix the problem.
  1715. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1716. 2023-08-22 08:19:21,470:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.52s to run.
  1717. If this happens often in your code, it can cause performance problems
  1718. (results will be correct in all cases).
  1719. The reason for this is probably some large input arguments for a wrapped
  1720. function (e.g. large strings).
  1721. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1722. example so that they can fix the problem.
  1723. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1724. 2023-08-22 08:19:23,566:INFO:Calculating mean and std
  1725. 2023-08-22 08:19:23,568:INFO:Creating metrics dataframe
  1726. 2023-08-22 08:19:23,892:INFO:Uploading results into container
  1727. 2023-08-22 08:19:23,893:INFO:Uploading model into container now
  1728. 2023-08-22 08:19:23,894:INFO:_master_model_container: 11
  1729. 2023-08-22 08:19:23,894:INFO:_display_container: 2
  1730. 2023-08-22 08:19:23,895:INFO:LinearDiscriminantAnalysis(covariance_estimator=None, n_components=None,
  1731. priors=None, shrinkage=None, solver='svd',
  1732. store_covariance=False, tol=0.0001)
  1733. 2023-08-22 08:19:23,895:INFO:create_model() successfully completed......................................
  1734. 2023-08-22 08:19:24,000:INFO:SubProcess create_model() end ==================================
  1735. 2023-08-22 08:19:24,000:INFO:Creating metrics dataframe
  1736. 2023-08-22 08:19:24,021:INFO:Initializing Extra Trees Classifier
  1737. 2023-08-22 08:19:24,022:INFO:Total runtime is 1.1914376258850097 minutes
  1738. 2023-08-22 08:19:24,035:INFO:SubProcess create_model() called ==================================
  1739. 2023-08-22 08:19:24,036:INFO:Initializing create_model()
  1740. 2023-08-22 08:19:24,036:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=et, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  1741. 2023-08-22 08:19:24,037:INFO:Checking exceptions
  1742. 2023-08-22 08:19:24,037:INFO:Importing libraries
  1743. 2023-08-22 08:19:24,037:INFO:Copying training dataset
  1744. 2023-08-22 08:19:24,052:INFO:Defining folds
  1745. 2023-08-22 08:19:24,052:INFO:Declaring metric variables
  1746. 2023-08-22 08:19:24,065:INFO:Importing untrained model
  1747. 2023-08-22 08:19:24,078:INFO:Extra Trees Classifier Imported successfully
  1748. 2023-08-22 08:19:24,107:INFO:Starting cross validation
  1749. 2023-08-22 08:19:24,114:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  1750. 2023-08-22 08:19:26,659:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:260: UserWarning: Persisting input arguments took 0.61s to run.
  1751. If this happens often in your code, it can cause performance problems
  1752. (results will be correct in all cases).
  1753. The reason for this is probably some large input arguments for a wrapped
  1754. function (e.g. large strings).
  1755. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1756. example so that they can fix the problem.
  1757. fitted_estimator = self._memory_fit(
  1758. 2023-08-22 08:19:26,706:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:260: UserWarning: Persisting input arguments took 0.58s to run.
  1759. If this happens often in your code, it can cause performance problems
  1760. (results will be correct in all cases).
  1761. The reason for this is probably some large input arguments for a wrapped
  1762. function (e.g. large strings).
  1763. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1764. example so that they can fix the problem.
  1765. fitted_estimator = self._memory_fit(
  1766. 2023-08-22 08:19:28,120:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:260: UserWarning: Persisting input arguments took 0.53s to run.
  1767. If this happens often in your code, it can cause performance problems
  1768. (results will be correct in all cases).
  1769. The reason for this is probably some large input arguments for a wrapped
  1770. function (e.g. large strings).
  1771. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1772. example so that they can fix the problem.
  1773. fitted_estimator = self._memory_fit(
  1774. 2023-08-22 08:19:28,736:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.07s to run.
  1775. If this happens often in your code, it can cause performance problems
  1776. (results will be correct in all cases).
  1777. The reason for this is probably some large input arguments for a wrapped
  1778. function (e.g. large strings).
  1779. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1780. example so that they can fix the problem.
  1781. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1782. 2023-08-22 08:19:28,842:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.08s to run.
  1783. If this happens often in your code, it can cause performance problems
  1784. (results will be correct in all cases).
  1785. The reason for this is probably some large input arguments for a wrapped
  1786. function (e.g. large strings).
  1787. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1788. example so that they can fix the problem.
  1789. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1790. 2023-08-22 08:19:28,920:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.15s to run.
  1791. If this happens often in your code, it can cause performance problems
  1792. (results will be correct in all cases).
  1793. The reason for this is probably some large input arguments for a wrapped
  1794. function (e.g. large strings).
  1795. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1796. example so that they can fix the problem.
  1797. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1798. 2023-08-22 08:19:28,976:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.14s to run.
  1799. If this happens often in your code, it can cause performance problems
  1800. (results will be correct in all cases).
  1801. The reason for this is probably some large input arguments for a wrapped
  1802. function (e.g. large strings).
  1803. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1804. example so that they can fix the problem.
  1805. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1806. 2023-08-22 08:19:29,403:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.40s to run.
  1807. If this happens often in your code, it can cause performance problems
  1808. (results will be correct in all cases).
  1809. The reason for this is probably some large input arguments for a wrapped
  1810. function (e.g. large strings).
  1811. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1812. example so that they can fix the problem.
  1813. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1814. 2023-08-22 08:19:29,446:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.52s to run.
  1815. If this happens often in your code, it can cause performance problems
  1816. (results will be correct in all cases).
  1817. The reason for this is probably some large input arguments for a wrapped
  1818. function (e.g. large strings).
  1819. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1820. example so that they can fix the problem.
  1821. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1822. 2023-08-22 08:19:29,991:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.52s to run.
  1823. If this happens often in your code, it can cause performance problems
  1824. (results will be correct in all cases).
  1825. The reason for this is probably some large input arguments for a wrapped
  1826. function (e.g. large strings).
  1827. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1828. example so that they can fix the problem.
  1829. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1830. 2023-08-22 08:19:31,176:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.39s to run.
  1831. If this happens often in your code, it can cause performance problems
  1832. (results will be correct in all cases).
  1833. The reason for this is probably some large input arguments for a wrapped
  1834. function (e.g. large strings).
  1835. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1836. example so that they can fix the problem.
  1837. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1838. 2023-08-22 08:19:33,663:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.55s to run.
  1839. If this happens often in your code, it can cause performance problems
  1840. (results will be correct in all cases).
  1841. The reason for this is probably some large input arguments for a wrapped
  1842. function (e.g. large strings).
  1843. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1844. example so that they can fix the problem.
  1845. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1846. 2023-08-22 08:19:34,338:INFO:Calculating mean and std
  1847. 2023-08-22 08:19:34,354:INFO:Creating metrics dataframe
  1848. 2023-08-22 08:19:34,762:INFO:Uploading results into container
  1849. 2023-08-22 08:19:34,762:INFO:Uploading model into container now
  1850. 2023-08-22 08:19:34,762:INFO:_master_model_container: 12
  1851. 2023-08-22 08:19:34,762:INFO:_display_container: 2
  1852. 2023-08-22 08:19:34,762:INFO:ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,
  1853. criterion='gini', max_depth=None, max_features='sqrt',
  1854. max_leaf_nodes=None, max_samples=None,
  1855. min_impurity_decrease=0.0, min_samples_leaf=1,
  1856. min_samples_split=2, min_weight_fraction_leaf=0.0,
  1857. n_estimators=100, n_jobs=-1, oob_score=False,
  1858. random_state=123, verbose=0, warm_start=False)
  1859. 2023-08-22 08:19:34,762:INFO:create_model() successfully completed......................................
  1860. 2023-08-22 08:19:34,840:INFO:SubProcess create_model() end ==================================
  1861. 2023-08-22 08:19:34,840:INFO:Creating metrics dataframe
  1862. 2023-08-22 08:19:34,856:INFO:Initializing Light Gradient Boosting Machine
  1863. 2023-08-22 08:19:34,856:INFO:Total runtime is 1.3719988385836284 minutes
  1864. 2023-08-22 08:19:34,871:INFO:SubProcess create_model() called ==================================
  1865. 2023-08-22 08:19:34,871:INFO:Initializing create_model()
  1866. 2023-08-22 08:19:34,871:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=lightgbm, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  1867. 2023-08-22 08:19:34,871:INFO:Checking exceptions
  1868. 2023-08-22 08:19:34,871:INFO:Importing libraries
  1869. 2023-08-22 08:19:34,871:INFO:Copying training dataset
  1870. 2023-08-22 08:19:34,891:INFO:Defining folds
  1871. 2023-08-22 08:19:34,891:INFO:Declaring metric variables
  1872. 2023-08-22 08:19:34,904:INFO:Importing untrained model
  1873. 2023-08-22 08:19:34,919:INFO:Light Gradient Boosting Machine Imported successfully
  1874. 2023-08-22 08:19:34,950:INFO:Starting cross validation
  1875. 2023-08-22 08:19:34,950:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  1876. 2023-08-22 08:19:41,815:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.25s to run.
  1877. If this happens often in your code, it can cause performance problems
  1878. (results will be correct in all cases).
  1879. The reason for this is probably some large input arguments for a wrapped
  1880. function (e.g. large strings).
  1881. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1882. example so that they can fix the problem.
  1883. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1884. 2023-08-22 08:19:41,862:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.92s to run.
  1885. If this happens often in your code, it can cause performance problems
  1886. (results will be correct in all cases).
  1887. The reason for this is probably some large input arguments for a wrapped
  1888. function (e.g. large strings).
  1889. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1890. example so that they can fix the problem.
  1891. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1892. 2023-08-22 08:19:41,958:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.75s to run.
  1893. If this happens often in your code, it can cause performance problems
  1894. (results will be correct in all cases).
  1895. The reason for this is probably some large input arguments for a wrapped
  1896. function (e.g. large strings).
  1897. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1898. example so that they can fix the problem.
  1899. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1900. 2023-08-22 08:19:43,370:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.86s to run.
  1901. If this happens often in your code, it can cause performance problems
  1902. (results will be correct in all cases).
  1903. The reason for this is probably some large input arguments for a wrapped
  1904. function (e.g. large strings).
  1905. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1906. example so that they can fix the problem.
  1907. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1908. 2023-08-22 08:19:43,934:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 2.39s to run.
  1909. If this happens often in your code, it can cause performance problems
  1910. (results will be correct in all cases).
  1911. The reason for this is probably some large input arguments for a wrapped
  1912. function (e.g. large strings).
  1913. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1914. example so that they can fix the problem.
  1915. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1916. 2023-08-22 08:19:44,315:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:108: UserWarning: Persisting input arguments took 1.13s to run.
  1917. If this happens often in your code, it can cause performance problems
  1918. (results will be correct in all cases).
  1919. The reason for this is probably some large input arguments for a wrapped
  1920. function (e.g. large strings).
  1921. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1922. example so that they can fix the problem.
  1923. X, y = pipeline._memory_transform(transformer, X, y)
  1924. 2023-08-22 08:19:45,308:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.76s to run.
  1925. If this happens often in your code, it can cause performance problems
  1926. (results will be correct in all cases).
  1927. The reason for this is probably some large input arguments for a wrapped
  1928. function (e.g. large strings).
  1929. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1930. example so that they can fix the problem.
  1931. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1932. 2023-08-22 08:19:45,613:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.71s to run.
  1933. If this happens often in your code, it can cause performance problems
  1934. (results will be correct in all cases).
  1935. The reason for this is probably some large input arguments for a wrapped
  1936. function (e.g. large strings).
  1937. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1938. example so that they can fix the problem.
  1939. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1940. 2023-08-22 08:19:45,968:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.89s to run.
  1941. If this happens often in your code, it can cause performance problems
  1942. (results will be correct in all cases).
  1943. The reason for this is probably some large input arguments for a wrapped
  1944. function (e.g. large strings).
  1945. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1946. example so that they can fix the problem.
  1947. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1948. 2023-08-22 08:19:48,798:INFO:Calculating mean and std
  1949. 2023-08-22 08:19:48,805:INFO:Creating metrics dataframe
  1950. 2023-08-22 08:19:49,362:INFO:Uploading results into container
  1951. 2023-08-22 08:19:49,363:INFO:Uploading model into container now
  1952. 2023-08-22 08:19:49,365:INFO:_master_model_container: 13
  1953. 2023-08-22 08:19:49,365:INFO:_display_container: 2
  1954. 2023-08-22 08:19:49,366:INFO:LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,
  1955. importance_type='split', learning_rate=0.1, max_depth=-1,
  1956. min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,
  1957. n_estimators=100, n_jobs=-1, num_leaves=31, objective=None,
  1958. random_state=123, reg_alpha=0.0, reg_lambda=0.0, subsample=1.0,
  1959. subsample_for_bin=200000, subsample_freq=0)
  1960. 2023-08-22 08:19:49,367:INFO:create_model() successfully completed......................................
  1961. 2023-08-22 08:19:49,491:INFO:SubProcess create_model() end ==================================
  1962. 2023-08-22 08:19:49,491:INFO:Creating metrics dataframe
  1963. 2023-08-22 08:19:49,529:INFO:Initializing Dummy Classifier
  1964. 2023-08-22 08:19:49,530:INFO:Total runtime is 1.6165675719579062 minutes
  1965. 2023-08-22 08:19:49,537:INFO:SubProcess create_model() called ==================================
  1966. 2023-08-22 08:19:49,538:INFO:Initializing create_model()
  1967. 2023-08-22 08:19:49,538:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=dummy, fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=<pycaret.internal.display.display.CommonDisplay object at 0x0000017231089160>, model_only=True, return_train_score=False, kwargs={})
  1968. 2023-08-22 08:19:49,538:INFO:Checking exceptions
  1969. 2023-08-22 08:19:49,538:INFO:Importing libraries
  1970. 2023-08-22 08:19:49,538:INFO:Copying training dataset
  1971. 2023-08-22 08:19:49,553:INFO:Defining folds
  1972. 2023-08-22 08:19:49,553:INFO:Declaring metric variables
  1973. 2023-08-22 08:19:49,561:INFO:Importing untrained model
  1974. 2023-08-22 08:19:49,574:INFO:Dummy Classifier Imported successfully
  1975. 2023-08-22 08:19:49,593:INFO:Starting cross validation
  1976. 2023-08-22 08:19:49,600:INFO:Cross validating with StratifiedKFold(n_splits=10, random_state=None, shuffle=False), n_jobs=-1
  1977. 2023-08-22 08:19:51,079:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:238: UserWarning: Persisting input arguments took 0.83s to run.
  1978. If this happens often in your code, it can cause performance problems
  1979. (results will be correct in all cases).
  1980. The reason for this is probably some large input arguments for a wrapped
  1981. function (e.g. large strings).
  1982. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1983. example so that they can fix the problem.
  1984. X, y = self._memory_transform(
  1985. 2023-08-22 08:19:51,585:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.62s to run.
  1986. If this happens often in your code, it can cause performance problems
  1987. (results will be correct in all cases).
  1988. The reason for this is probably some large input arguments for a wrapped
  1989. function (e.g. large strings).
  1990. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  1991. example so that they can fix the problem.
  1992. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  1993. 2023-08-22 08:19:51,819:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  1994. _warn_prf(average, modifier, msg_start, len(result))
  1995. 2023-08-22 08:19:51,842:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  1996. _warn_prf(average, modifier, msg_start, len(result))
  1997. 2023-08-22 08:19:51,900:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.72s to run.
  1998. If this happens often in your code, it can cause performance problems
  1999. (results will be correct in all cases).
  2000. The reason for this is probably some large input arguments for a wrapped
  2001. function (e.g. large strings).
  2002. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  2003. example so that they can fix the problem.
  2004. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  2005. 2023-08-22 08:19:51,910:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.74s to run.
  2006. If this happens often in your code, it can cause performance problems
  2007. (results will be correct in all cases).
  2008. The reason for this is probably some large input arguments for a wrapped
  2009. function (e.g. large strings).
  2010. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  2011. example so that they can fix the problem.
  2012. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  2013. 2023-08-22 08:19:52,086:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  2014. _warn_prf(average, modifier, msg_start, len(result))
  2015. 2023-08-22 08:19:52,086:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.71s to run.
  2016. If this happens often in your code, it can cause performance problems
  2017. (results will be correct in all cases).
  2018. The reason for this is probably some large input arguments for a wrapped
  2019. function (e.g. large strings).
  2020. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  2021. example so that they can fix the problem.
  2022. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  2023. 2023-08-22 08:19:52,101:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  2024. _warn_prf(average, modifier, msg_start, len(result))
  2025. 2023-08-22 08:19:52,101:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.71s to run.
  2026. If this happens often in your code, it can cause performance problems
  2027. (results will be correct in all cases).
  2028. The reason for this is probably some large input arguments for a wrapped
  2029. function (e.g. large strings).
  2030. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  2031. example so that they can fix the problem.
  2032. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  2033. 2023-08-22 08:19:52,268:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  2034. _warn_prf(average, modifier, msg_start, len(result))
  2035. 2023-08-22 08:19:52,268:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  2036. _warn_prf(average, modifier, msg_start, len(result))
  2037. 2023-08-22 08:19:52,299:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 0.91s to run.
  2038. If this happens often in your code, it can cause performance problems
  2039. (results will be correct in all cases).
  2040. The reason for this is probably some large input arguments for a wrapped
  2041. function (e.g. large strings).
  2042. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  2043. example so that they can fix the problem.
  2044. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  2045. 2023-08-22 08:19:52,493:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  2046. _warn_prf(average, modifier, msg_start, len(result))
  2047. 2023-08-22 08:19:53,144:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\pycaret\internal\pipeline.py:310: UserWarning: Persisting input arguments took 1.09s to run.
  2048. If this happens often in your code, it can cause performance problems
  2049. (results will be correct in all cases).
  2050. The reason for this is probably some large input arguments for a wrapped
  2051. function (e.g. large strings).
  2052. THIS IS A JOBLIB ISSUE. If you can, kindly provide the joblib's team with an
  2053. example so that they can fix the problem.
  2054. X, _ = self._memory_full_transform(self, X, None, with_final=False)
  2055. 2023-08-22 08:19:53,295:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  2056. _warn_prf(average, modifier, msg_start, len(result))
  2057. 2023-08-22 08:19:54,336:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  2058. _warn_prf(average, modifier, msg_start, len(result))
  2059. 2023-08-22 08:19:54,730:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\metrics\_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  2060. _warn_prf(average, modifier, msg_start, len(result))
  2061. 2023-08-22 08:19:55,269:INFO:Calculating mean and std
  2062. 2023-08-22 08:19:55,285:INFO:Creating metrics dataframe
  2063. 2023-08-22 08:19:55,624:INFO:Uploading results into container
  2064. 2023-08-22 08:19:55,624:INFO:Uploading model into container now
  2065. 2023-08-22 08:19:55,624:INFO:_master_model_container: 14
  2066. 2023-08-22 08:19:55,624:INFO:_display_container: 2
  2067. 2023-08-22 08:19:55,624:INFO:DummyClassifier(constant=None, random_state=123, strategy='prior')
  2068. 2023-08-22 08:19:55,624:INFO:create_model() successfully completed......................................
  2069. 2023-08-22 08:19:55,771:INFO:SubProcess create_model() end ==================================
  2070. 2023-08-22 08:19:55,771:INFO:Creating metrics dataframe
  2071. 2023-08-22 08:19:55,825:INFO:Initializing create_model()
  2072. 2023-08-22 08:19:55,825:INFO:create_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=GaussianNB(priors=None, var_smoothing=1e-09), fold=StratifiedKFold(n_splits=10, random_state=None, shuffle=False), round=4, cross_validation=False, predict=False, fit_kwargs={}, groups=None, refit=True, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=None, model_only=True, return_train_score=False, kwargs={})
  2073. 2023-08-22 08:19:55,825:INFO:Checking exceptions
  2074. 2023-08-22 08:19:55,839:INFO:Importing libraries
  2075. 2023-08-22 08:19:55,839:INFO:Copying training dataset
  2076. 2023-08-22 08:19:55,848:INFO:Defining folds
  2077. 2023-08-22 08:19:55,851:INFO:Declaring metric variables
  2078. 2023-08-22 08:19:55,852:INFO:Importing untrained model
  2079. 2023-08-22 08:19:55,852:INFO:Declaring custom model
  2080. 2023-08-22 08:19:55,854:INFO:Naive Bayes Imported successfully
  2081. 2023-08-22 08:19:55,856:INFO:Cross validation set to False
  2082. 2023-08-22 08:19:55,856:INFO:Fitting Model
  2083. 2023-08-22 08:19:56,581:INFO:GaussianNB(priors=None, var_smoothing=1e-09)
  2084. 2023-08-22 08:19:56,581:INFO:create_model() successfully completed......................................
  2085. 2023-08-22 08:19:56,688:INFO:Creating Dashboard logs
  2086. 2023-08-22 08:19:56,691:INFO:Model: Naive Bayes
  2087. 2023-08-22 08:19:56,770:INFO:Logged params: {'priors': None, 'var_smoothing': 1e-09}
  2088. 2023-08-22 08:19:56,931:INFO:Initializing predict_model()
  2089. 2023-08-22 08:19:56,931:INFO:predict_model(self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, estimator=GaussianNB(priors=None, var_smoothing=1e-09), probability_threshold=None, encoded_labels=False, raw_score=False, round=4, verbose=False, ml_usecase=None, preprocess=True, encode_labels=<function _SupervisedExperiment.predict_model.<locals>.encode_labels at 0x0000017257584670>)
  2090. 2023-08-22 08:19:56,931:INFO:Checking exceptions
  2091. 2023-08-22 08:19:56,932:INFO:Preloading libraries
  2092. 2023-08-22 08:19:57,288:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\_distutils_hack\__init__.py:33: UserWarning: Setuptools is replacing distutils.
  2093. warnings.warn("Setuptools is replacing distutils.")
  2094. 2023-08-22 08:19:57,638:INFO:Creating Dashboard logs
  2095. 2023-08-22 08:19:57,652:INFO:Model: K Neighbors Classifier
  2096. 2023-08-22 08:19:57,721:INFO:Logged params: {'algorithm': 'auto', 'leaf_size': 30, 'metric': 'minkowski', 'metric_params': None, 'n_jobs': -1, 'n_neighbors': 5, 'p': 2, 'weights': 'uniform'}
  2097. 2023-08-22 08:19:58,299:INFO:Creating Dashboard logs
  2098. 2023-08-22 08:19:58,315:INFO:Model: Quadratic Discriminant Analysis
  2099. 2023-08-22 08:19:58,414:INFO:Logged params: {'priors': None, 'reg_param': 0.0, 'store_covariance': False, 'tol': 0.0001}
  2100. 2023-08-22 08:19:58,839:INFO:Creating Dashboard logs
  2101. 2023-08-22 08:19:58,848:INFO:Model: Logistic Regression
  2102. 2023-08-22 08:19:58,934:INFO:Logged params: {'C': 1.0, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 123, 'solver': 'lbfgs', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}
  2103. 2023-08-22 08:19:59,540:INFO:Creating Dashboard logs
  2104. 2023-08-22 08:19:59,547:INFO:Model: Random Forest Classifier
  2105. 2023-08-22 08:19:59,625:INFO:Logged params: {'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False}
  2106. 2023-08-22 08:20:00,155:INFO:Creating Dashboard logs
  2107. 2023-08-22 08:20:00,161:INFO:Model: SVM - Linear Kernel
  2108. 2023-08-22 08:20:00,218:INFO:Logged params: {'alpha': 0.0001, 'average': False, 'class_weight': None, 'early_stopping': False, 'epsilon': 0.1, 'eta0': 0.001, 'fit_intercept': True, 'l1_ratio': 0.15, 'learning_rate': 'optimal', 'loss': 'hinge', 'max_iter': 1000, 'n_iter_no_change': 5, 'n_jobs': -1, 'penalty': 'l2', 'power_t': 0.5, 'random_state': 123, 'shuffle': True, 'tol': 0.001, 'validation_fraction': 0.1, 'verbose': 0, 'warm_start': False}
  2109. 2023-08-22 08:20:00,817:INFO:Creating Dashboard logs
  2110. 2023-08-22 08:20:00,822:INFO:Model: Ridge Classifier
  2111. 2023-08-22 08:20:00,891:INFO:Logged params: {'alpha': 1.0, 'class_weight': None, 'copy_X': True, 'fit_intercept': True, 'max_iter': None, 'positive': False, 'random_state': 123, 'solver': 'auto', 'tol': 0.0001}
  2112. 2023-08-22 08:20:01,417:INFO:Creating Dashboard logs
  2113. 2023-08-22 08:20:01,431:INFO:Model: Linear Discriminant Analysis
  2114. 2023-08-22 08:20:01,496:INFO:Logged params: {'covariance_estimator': None, 'n_components': None, 'priors': None, 'shrinkage': None, 'solver': 'svd', 'store_covariance': False, 'tol': 0.0001}
  2115. 2023-08-22 08:20:02,066:INFO:Creating Dashboard logs
  2116. 2023-08-22 08:20:02,066:INFO:Model: Extra Trees Classifier
  2117. 2023-08-22 08:20:02,131:INFO:Logged params: {'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'oob_score': False, 'random_state': 123, 'verbose': 0, 'warm_start': False}
  2118. 2023-08-22 08:20:02,737:INFO:Creating Dashboard logs
  2119. 2023-08-22 08:20:02,737:INFO:Model: Light Gradient Boosting Machine
  2120. 2023-08-22 08:20:02,806:INFO:Logged params: {'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 31, 'objective': None, 'random_state': 123, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0}
  2121. 2023-08-22 08:20:03,278:INFO:Creating Dashboard logs
  2122. 2023-08-22 08:20:03,291:INFO:Model: Dummy Classifier
  2123. 2023-08-22 08:20:03,367:INFO:Logged params: {'constant': None, 'random_state': 123, 'strategy': 'prior'}
  2124. 2023-08-22 08:20:03,852:INFO:Creating Dashboard logs
  2125. 2023-08-22 08:20:03,859:INFO:Model: Ada Boost Classifier
  2126. 2023-08-22 08:20:03,918:INFO:Logged params: {'algorithm': 'SAMME.R', 'base_estimator': 'deprecated', 'estimator': None, 'learning_rate': 1.0, 'n_estimators': 50, 'random_state': 123}
  2127. 2023-08-22 08:20:04,399:INFO:Creating Dashboard logs
  2128. 2023-08-22 08:20:04,414:INFO:Model: Gradient Boosting Classifier
  2129. 2023-08-22 08:20:04,475:INFO:Logged params: {'ccp_alpha': 0.0, 'criterion': 'friedman_mse', 'init': None, 'learning_rate': 0.1, 'loss': 'log_loss', 'max_depth': 3, 'max_features': None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_iter_no_change': None, 'random_state': 123, 'subsample': 1.0, 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': 0, 'warm_start': False}
  2130. 2023-08-22 08:20:05,040:INFO:Creating Dashboard logs
  2131. 2023-08-22 08:20:05,040:INFO:Model: Decision Tree Classifier
  2132. 2023-08-22 08:20:05,116:INFO:Logged params: {'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'random_state': 123, 'splitter': 'best'}
  2133. 2023-08-22 08:20:05,671:INFO:_master_model_container: 14
  2134. 2023-08-22 08:20:05,671:INFO:_display_container: 2
  2135. 2023-08-22 08:20:05,671:INFO:GaussianNB(priors=None, var_smoothing=1e-09)
  2136. 2023-08-22 08:20:05,672:INFO:compare_models() successfully completed......................................
  2137. 2023-08-22 08:20:22,051:INFO:Initializing plot_model()
  2138. 2023-08-22 08:20:22,051:INFO:plot_model(plot=auc, fold=None, verbose=True, display=None, display_format=None, estimator=GaussianNB(priors=None, var_smoothing=1e-09), feature_name=None, fit_kwargs=None, groups=None, label=False, plot_kwargs=None, save=False, scale=1, self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, system=True)
  2139. 2023-08-22 08:20:22,051:INFO:Checking exceptions
  2140. 2023-08-22 08:20:22,065:INFO:Preloading libraries
  2141. 2023-08-22 08:20:22,065:INFO:Copying training dataset
  2142. 2023-08-22 08:20:22,065:INFO:Plot type: auc
  2143. 2023-08-22 08:20:22,325:INFO:Fitting Model
  2144. 2023-08-22 08:20:22,325:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\base.py:439: UserWarning: X does not have valid feature names, but GaussianNB was fitted with feature names
  2145. warnings.warn(
  2146. 2023-08-22 08:20:22,325:INFO:Scoring test/hold-out set
  2147. 2023-08-22 08:20:22,680:INFO:Visual Rendered Successfully
  2148. 2023-08-22 08:20:22,761:INFO:plot_model() successfully completed......................................
  2149. 2023-08-22 08:20:28,563:INFO:Initializing plot_model()
  2150. 2023-08-22 08:20:28,563:INFO:plot_model(plot=confusion_matrix, fold=None, verbose=True, display=None, display_format=None, estimator=GaussianNB(priors=None, var_smoothing=1e-09), feature_name=None, fit_kwargs=None, groups=None, label=False, plot_kwargs=None, save=False, scale=1, self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, system=True)
  2151. 2023-08-22 08:20:28,564:INFO:Checking exceptions
  2152. 2023-08-22 08:20:28,572:INFO:Preloading libraries
  2153. 2023-08-22 08:20:28,573:INFO:Copying training dataset
  2154. 2023-08-22 08:20:28,574:INFO:Plot type: confusion_matrix
  2155. 2023-08-22 08:20:28,788:INFO:Fitting Model
  2156. 2023-08-22 08:20:28,788:WARNING:C:\Users\prvzs\anaconda3\envs\churn_prediction\lib\site-packages\sklearn\base.py:439: UserWarning: X does not have valid feature names, but GaussianNB was fitted with feature names
  2157. warnings.warn(
  2158. 2023-08-22 08:20:28,788:INFO:Scoring test/hold-out set
  2159. 2023-08-22 08:20:28,993:INFO:Visual Rendered Successfully
  2160. 2023-08-22 08:20:29,072:INFO:plot_model() successfully completed......................................
  2161. 2023-08-22 08:20:33,458:INFO:Initializing plot_model()
  2162. 2023-08-22 08:20:33,458:INFO:plot_model(plot=boundary, fold=None, verbose=True, display=None, display_format=None, estimator=GaussianNB(priors=None, var_smoothing=1e-09), feature_name=None, fit_kwargs=None, groups=None, label=False, plot_kwargs=None, save=False, scale=1, self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, system=True)
  2163. 2023-08-22 08:20:33,458:INFO:Checking exceptions
  2164. 2023-08-22 08:20:33,467:INFO:Preloading libraries
  2165. 2023-08-22 08:20:33,467:INFO:Copying training dataset
  2166. 2023-08-22 08:20:33,468:INFO:Plot type: boundary
  2167. 2023-08-22 08:20:33,594:INFO:Fitting StandardScaler()
  2168. 2023-08-22 08:20:33,609:INFO:Fitting PCA()
  2169. 2023-08-22 08:20:33,798:INFO:Fitting Model
  2170. 2023-08-22 08:20:35,092:INFO:Visual Rendered Successfully
  2171. 2023-08-22 08:20:35,253:INFO:plot_model() successfully completed......................................
  2172. 2023-08-22 08:20:35,296:INFO:Initializing plot_model()
  2173. 2023-08-22 08:20:35,296:INFO:plot_model(plot=feature, fold=None, verbose=True, display=None, display_format=None, estimator=GaussianNB(priors=None, var_smoothing=1e-09), feature_name=None, fit_kwargs=None, groups=None, label=False, plot_kwargs=None, save=False, scale=1, self=<pycaret.classification.oop.ClassificationExperiment object at 0x00000172522BAA90>, system=True)
  2174. 2023-08-22 08:20:35,297:INFO:Checking exceptions
  2175. 2023-08-22 08:22:09,802:INFO:Initializing save_model()
  2176. 2023-08-22 08:22:09,802:INFO:save_model(model=GaussianNB(priors=None, var_smoothing=1e-09), model_name=outputs\model, prep_pipe_=Pipeline(memory=FastMemory(location=C:\Users\prvzs\AppData\Local\Temp\joblib),
  2177. steps=[('label_encoding',
  2178. TransformerWrapperWithInverse(exclude=None, include=None,
  2179. transformer=LabelEncoder())),
  2180. ('numerical_imputer',
  2181. TransformerWrapper(exclude=None,
  2182. include=['SeniorCitizen', 'tenure',
  2183. 'MonthlyCharges'],
  2184. transformer=SimpleImputer(add_indicator=False,
  2185. copy=True,
  2186. f...
  2187. handle_unknown='value',
  2188. return_df=True,
  2189. use_cat_names=True,
  2190. verbose=0))),
  2191. ('rest_encoding',
  2192. TransformerWrapper(exclude=None, include=['TotalCharges'],
  2193. transformer=TargetEncoder(cols=['TotalCharges'],
  2194. drop_invariant=False,
  2195. handle_missing='return_nan',
  2196. handle_unknown='value',
  2197. hierarchy=None,
  2198. min_samples_leaf=20,
  2199. return_df=True,
  2200. smoothing=10,
  2201. verbose=0)))],
  2202. verbose=False), verbose=True, use_case=MLUsecase.CLASSIFICATION, kwargs={})
  2203. 2023-08-22 08:22:09,802:INFO:Adding model into prep_pipe
  2204. 2023-08-22 08:22:50,157:INFO:Initializing save_model()
  2205. 2023-08-22 08:22:50,157:INFO:save_model(model=GaussianNB(priors=None, var_smoothing=1e-09), model_name=outputs\model, prep_pipe_=Pipeline(memory=FastMemory(location=C:\Users\prvzs\AppData\Local\Temp\joblib),
  2206. steps=[('label_encoding',
  2207. TransformerWrapperWithInverse(exclude=None, include=None,
  2208. transformer=LabelEncoder())),
  2209. ('numerical_imputer',
  2210. TransformerWrapper(exclude=None,
  2211. include=['SeniorCitizen', 'tenure',
  2212. 'MonthlyCharges'],
  2213. transformer=SimpleImputer(add_indicator=False,
  2214. copy=True,
  2215. f...
  2216. handle_unknown='value',
  2217. return_df=True,
  2218. use_cat_names=True,
  2219. verbose=0))),
  2220. ('rest_encoding',
  2221. TransformerWrapper(exclude=None, include=['TotalCharges'],
  2222. transformer=TargetEncoder(cols=['TotalCharges'],
  2223. drop_invariant=False,
  2224. handle_missing='return_nan',
  2225. handle_unknown='value',
  2226. hierarchy=None,
  2227. min_samples_leaf=20,
  2228. return_df=True,
  2229. smoothing=10,
  2230. verbose=0)))],
  2231. verbose=False), verbose=True, use_case=MLUsecase.CLASSIFICATION, kwargs={})
  2232. 2023-08-22 08:22:50,157:INFO:Adding model into prep_pipe
  2233. 2023-08-22 08:22:50,203:INFO:outputs\model.pkl saved in current working directory
  2234. 2023-08-22 08:22:50,450:INFO:Pipeline(memory=FastMemory(location=C:\Users\prvzs\AppData\Local\Temp\joblib),
  2235. steps=[('label_encoding',
  2236. TransformerWrapperWithInverse(exclude=None, include=None,
  2237. transformer=LabelEncoder())),
  2238. ('numerical_imputer',
  2239. TransformerWrapper(exclude=None,
  2240. include=['SeniorCitizen', 'tenure',
  2241. 'MonthlyCharges'],
  2242. transformer=SimpleImputer(add_indicator=False,
  2243. copy=True,
  2244. f...
  2245. verbose=0))),
  2246. ('rest_encoding',
  2247. TransformerWrapper(exclude=None, include=['TotalCharges'],
  2248. transformer=TargetEncoder(cols=['TotalCharges'],
  2249. drop_invariant=False,
  2250. handle_missing='return_nan',
  2251. handle_unknown='value',
  2252. hierarchy=None,
  2253. min_samples_leaf=20,
  2254. return_df=True,
  2255. smoothing=10,
  2256. verbose=0))),
  2257. ('trained_model',
  2258. GaussianNB(priors=None, var_smoothing=1e-09))],
  2259. verbose=False)
  2260. 2023-08-22 08:22:50,451:INFO:save_model() successfully completed......................................
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...