Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

model.py 34 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
  1. from __future__ import division
  2. import os
  3. import time
  4. from glob import glob
  5. import tensorflow as tf
  6. import numpy as np
  7. from six.moves import xrange
  8. from ops import *
  9. from utils import *
  10. class DualNet(object):
  11. def __init__(self, sess, image_size=128, batch_size=1,fcn_filter_dim = 64, \
  12. input_channels_A = 3, input_channels_B = 3, dataset_name='facades', \
  13. checkpoint_dir=None, lambda_A = 200, lambda_B = 200, lambda_pair=200,\
  14. sample_dir=None, loss_metric = 'L1', network_type='fcn_1', use_labeled_data=False,\
  15. clamp = 0.01, n_critic = 3, flip = False):
  16. """
  17. Args:
  18. sess: TensorFlow session
  19. batch_size: The size of batch. Should be specified before training. [1]
  20. image_size: (optional) The resolution in pixels of the images. [128]
  21. fcn_filter_dim: (optional) Dimension of fcn filters in first conv layer. [64]
  22. input_channels_A: (optional) Dimension of input image color of Network A. For grayscale input, set to 1. [3]
  23. input_channels_B: (optional) Dimension of output image color of Network B. For grayscale input, set to 1. [3]
  24. """
  25. self.clamp = clamp
  26. self.n_critic = n_critic
  27. self.df_dim = fcn_filter_dim
  28. self.flip = flip
  29. self.use_labeled_data = (use_labeled_data == 'semi')
  30. self.lambda_A = lambda_A
  31. self.lambda_B = lambda_B
  32. self.lambda_pair = lambda_pair
  33. self.sess = sess
  34. self.is_grayscale_A = (input_channels_A == 1)
  35. self.is_grayscale_B = (input_channels_B == 1)
  36. self.batch_size = batch_size
  37. self.image_size = image_size
  38. #self.L1_lambda = L1_lambda
  39. self.fcn_filter_dim = fcn_filter_dim
  40. self.network_type = network_type
  41. self.input_channels_A = input_channels_A
  42. self.input_channels_B = input_channels_B
  43. self.loss_metric = loss_metric
  44. # batch normalization : deals with poor initialization helps gradient flow
  45. self.dataset_name = dataset_name
  46. self.checkpoint_dir = checkpoint_dir
  47. #directory name for output and logs saving
  48. self.dir_name = \
  49. "%s-batch_sz_%s-img_sz_%s-fltr_dim_%d-%s-%s-lambda_ABp_%s_%s_%s-c_%s-n_critic_%s-semi_%s" % \
  50. (self.dataset_name, self.batch_size, self.image_size,self.fcn_filter_dim,\
  51. self.loss_metric, self.network_type, self.lambda_A, self.lambda_B, \
  52. self.lambda_pair, self.clamp, self.n_critic, self.use_labeled_data)
  53. self.build_model()
  54. def build_model(self):
  55. ### define place holders
  56. self.real_A = tf.placeholder(tf.float32,
  57. [self.batch_size, self.image_size, self.image_size,
  58. self.input_channels_A ],
  59. name='input_images_of_A_network')
  60. self.real_B = tf.placeholder(tf.float32,
  61. [self.batch_size, self.image_size, self.image_size,
  62. self.input_channels_B ],
  63. name='input_images_of_B_network')
  64. self.real_PA = tf.placeholder(tf.float32,
  65. [self.batch_size, self.image_size, self.image_size,
  66. self.input_channels_A ],
  67. name='input_images_of_A_network')
  68. self.real_PB = tf.placeholder(tf.float32,
  69. [self.batch_size, self.image_size, self.image_size,
  70. self.input_channels_B ],
  71. name='input_images_of_B_network')
  72. ### define graphs
  73. #with tf.device('/gpu:0'):
  74. self.translated_A = self.A_g_net(self.real_A, reuse = False)
  75. self.A_D_predictions = self.A_d_net(self.translated_A, reuse = False)
  76. #with tf.device('/gpu:1'):
  77. self.translated_B = self.B_g_net(self.real_B, reuse = False)
  78. self.B_D_predictions = self.B_d_net(self.translated_B, reuse = False)
  79. #self.predictions_PAB_pair = self.C_d_net(tf.concat(3, [self.real_PA,self.real_PB]), reuse = False)
  80. ### define loss
  81. self.recover_A = self.B_g_net(self.translated_A, reuse = True)
  82. self.recover_B = self.A_g_net(self.translated_B, reuse = True)
  83. #self.translated_PA = self.A_g_net(self.real_PA, reuse = True)
  84. #self.translated_PB = self.B_g_net(self.real_PB, reuse = True)
  85. if self.loss_metric == 'L1':
  86. self.A_loss = tf.reduce_mean(tf.abs(self.recover_A - self.real_A))
  87. self.B_loss = tf.reduce_mean(tf.abs(self.recover_B - self.real_B))
  88. #self.loss_PAB = tf.reduce_mean(tf.abs(self.real_PA - self.translated_PB)) + \
  89. #tf.reduce_mean(tf.abs(self.real_PB - self.translated_PA))
  90. elif self.loss_metric == 'L2':
  91. self.A_loss = tf.reduce_mean(tf.square(self.recover_A - self.real_A))
  92. self.B_loss = tf.reduce_mean(tf.square(self.recover_B - self.real_B))
  93. #self.loss_PAB = tf.reduce_mean(tf.square(self.real_PA - self.translated_PB)) +\
  94. #tf.reduce_mean(tf.square(self.real_PB - self.translated_PA))
  95. self.A_D_predictions_ = self.A_d_net(self.real_B, reuse = True)
  96. self.A_d_loss_real = tf.reduce_mean(-self.A_D_predictions_)
  97. self.A_d_loss_fake = tf.reduce_mean(self.A_D_predictions) # + tf.reduce_mean(self.A_D_predictions_2)
  98. self.A_d_loss = self.A_d_loss_fake + self.A_d_loss_real
  99. self.A_g_loss = tf.reduce_mean(-self.A_D_predictions) + self.lambda_B * (self.B_loss )
  100. self.B_D_predictions_ = self.B_d_net(self.real_A, reuse = True)
  101. self.B_d_loss_real = tf.reduce_mean(-self.B_D_predictions_)
  102. self.B_d_loss_fake = tf.reduce_mean(self.B_D_predictions) #+ tf.reduce_mean(self.B_D_predictions_2)
  103. self.B_d_loss = self.B_d_loss_fake + self.B_d_loss_real
  104. self.B_g_loss = tf.reduce_mean(-self.B_D_predictions) + self.lambda_A * (self.A_loss )
  105. #predictions_A_pair = self.C_d_net(tf.concat(3, [self.real_A,self.translated_A]), reuse = True)
  106. #predictions_B_pair = self.C_d_net(tf.concat(3, [self.translated_B,self.real_B]), reuse = True)
  107. #predictions_PA_pair = self.C_d_net(tf.concat(3, [self.real_PA,self.translated_PA]), reuse = True)
  108. #predictions_PB_pair = self.C_d_net(tf.concat(3, [self.translated_PB,self.real_PB]), reuse = True)
  109. #self.C_d_loss_fake = tf.reduce_mean(predictions_A_pair)+ \
  110. # tf.reduce_mean(predictions_B_pair)+ \
  111. # tf.reduce_mean(predictions_PA_pair)+ \
  112. # tf.reduce_mean(predictions_PB_pair)
  113. #self.C_d_loss_real = tf.mul(4.0, tf.reduce_mean(-self.predictions_PAB_pair))
  114. #self.C_d_loss = self.C_d_loss_fake + self.C_d_loss_real\
  115. #self.g_loss_pair = \
  116. #tf.reduce_mean(-predictions_A_pair)+ \
  117. #tf.reduce_mean(-predictions_B_pair)+ \
  118. #tf.reduce_mean(-predictions_PA_pair)+ \
  119. #tf.reduce_mean(-predictions_PB_pair)+ \
  120. #self.lambda_pair * self.loss_PAB
  121. #if self.use_labeled_data:
  122. #self.d_loss = self.A_d_loss + self.B_d_loss + self.C_d_loss
  123. #self.g_loss = self.A_g_loss + self.B_g_loss + self.g_loss_pair
  124. #else:
  125. self.d_loss = self.A_d_loss + self.B_d_loss
  126. self.g_loss = self.A_g_loss + self.B_g_loss
  127. """
  128. self.translated_A_sum = tf.summary.image("translated_A", self.translated_A)
  129. self.translated_B_sum = tf.summary.image("translated_B", self.translated_B)
  130. self.recover_A_sum = tf.summary.image("recover_A", self.recover_A)
  131. self.recover_B_sum = tf.summary.image("recover_B", self.recover_B)
  132. """
  133. ### define summary
  134. self.A_d_loss_sum = tf.summary.scalar("A_d_loss", self.A_d_loss)
  135. self.A_loss_sum = tf.summary.scalar("A_loss", self.A_loss)
  136. self.B_d_loss_sum = tf.summary.scalar("B_d_loss", self.B_d_loss)
  137. self.B_loss_sum = tf.summary.scalar("B_loss", self.B_loss)
  138. self.A_g_loss_sum = tf.summary.scalar("A_g_loss", self.A_g_loss)
  139. self.B_g_loss_sum = tf.summary.scalar("B_g_loss", self.B_g_loss)
  140. self.d_loss_sum = tf.summary.merge([self.A_d_loss_sum, self.B_d_loss_sum])
  141. self.g_loss_sum = tf.summary.merge([self.A_g_loss_sum, self.B_g_loss_sum, self.A_loss_sum, self.B_loss_sum])
  142. ## define trainable variables
  143. t_vars = tf.trainable_variables()
  144. self.A_d_vars = [var for var in t_vars if 'A_d_' in var.name]
  145. self.B_d_vars = [var for var in t_vars if 'B_d_' in var.name]
  146. #self.C_d_vars = [var for var in t_vars if 'C_d_' in var.name]
  147. self.A_g_vars = [var for var in t_vars if 'A_g_' in var.name]
  148. self.B_g_vars = [var for var in t_vars if 'B_g_' in var.name]
  149. if self.use_labeled_data:
  150. self.d_vars = self.A_d_vars + self.B_d_vars + self.C_d_vars
  151. else:
  152. self.d_vars = self.A_d_vars + self.B_d_vars
  153. self.g_vars = self.A_g_vars + self.B_g_vars
  154. self.saver = tf.train.Saver()
  155. def clip_trainable_vars(self, var_list):
  156. for var in var_list:
  157. self.sess.run(var.assign(tf.clip_by_value(var, -self.c, self.c)))
  158. def load_random_samples(self):
  159. #np.random.choice(
  160. data =np.random.choice(glob('./datasets/{}/val/A/*.jpg'.format(self.dataset_name)),self.batch_size)
  161. sample_A = [load_data(sample_file, image_size =self.image_size, flip = False) for sample_file in data]
  162. data = np.random.choice(glob('./datasets/{}/val/B/*.jpg'.format(self.dataset_name)),self.batch_size)
  163. sample_B = [load_data(sample_file, image_size =self.image_size, flip = False) for sample_file in data]
  164. sample_A_images = np.reshape(np.array(sample_A).astype(np.float32),(self.batch_size,self.image_size, self.image_size,-1))
  165. sample_B_images = np.reshape(np.array(sample_B).astype(np.float32),(self.batch_size,self.image_size, self.image_size,-1))
  166. return sample_A_images, sample_B_images
  167. def sample_shotcut(self, sample_dir, epoch, idx, batch_idxs):
  168. sample_A_imgs,sample_B_imgs = self.load_random_samples()
  169. Ag, recover_A_value, translated_A_value = self.sess.run([self.A_loss, self.recover_A, self.translated_A], feed_dict={self.real_A: sample_A_imgs, self.real_B: sample_B_imgs})
  170. Bg, recover_B_value, translated_B_value = self.sess.run([self.B_loss, self.recover_B, self.translated_B], feed_dict={self.real_A: sample_A_imgs, self.real_B: sample_B_imgs})
  171. save_images(translated_A_value, [self.batch_size,1], './{}/{}/{:06d}_{:04d}_train_translated_A_{:02d}.png'.format(sample_dir,self.dir_name , epoch, idx, batch_idxs))
  172. save_images(recover_A_value, [self.batch_size,1], './{}/{}/{:06d}_{:04d}_train_recover_A_{:02d}_.png'.format(sample_dir,self.dir_name, epoch, idx, batch_idxs))
  173. save_images(translated_B_value, [self.batch_size,1], './{}/{}/{:06d}_{:04d}_train_translated_B_{:02d}.png'.format(sample_dir,self.dir_name, epoch, idx,batch_idxs))
  174. save_images(recover_B_value, [self.batch_size,1], './{}/{}/{:06d}_{:04d}_train_recover_B_epoch={:02d}.png'.format(sample_dir,self.dir_name, epoch, idx, batch_idxs))
  175. print("[Sample] A_loss: {:.8f}, B_loss: {:.8f}".format(Ag, Bg))
  176. def train(self, args):
  177. """Train Dual GAN"""
  178. decay = 0.9
  179. self.d_optim = tf.train.RMSPropOptimizer(args.lr, decay=decay) \
  180. .minimize(self.d_loss, var_list=self.d_vars)
  181. self.g_optim = tf.train.RMSPropOptimizer(args.lr, decay=decay) \
  182. .minimize(self.g_loss, var_list=self.g_vars)
  183. self.clip_d_vars_ops = [val.assign(tf.clip_by_value(val, -self.clamp, self.clamp)) for val in self.d_vars]
  184. tf.global_variables_initializer().run()
  185. self.writer = tf.summary.FileWriter("./logs/"+self.dir_name, self.sess.graph)
  186. counter = 1
  187. start_time = time.time()
  188. if self.load(self.checkpoint_dir):
  189. print(" [*] Load SUCCESS")
  190. else:
  191. print(" [!] Load failed...")
  192. for epoch in xrange(args.epoch):
  193. data_A = glob('./datasets/{}/train/A/*.jpg'.format(self.dataset_name))
  194. data_B = glob('./datasets/{}/train/B/*.jpg'.format(self.dataset_name))
  195. np.random.shuffle(data_A)
  196. np.random.shuffle(data_B)
  197. batch_idxs = min(len(data_A), len(data_B)) // (self.batch_size*self.n_critic)
  198. if self.use_labeled_data:
  199. data_PAB = glob('./datasets/{}/train/AB/*.jpg'.format(self.dataset_name))
  200. np.random.shuffle(data_PAB)
  201. batch_num_PAB = len(data_PAB)// (self.batch_size*self.n_critic)
  202. for idx in xrange(0, batch_idxs):
  203. imgA_batch_list = [self.load_training_imgs(data_A, idx+i) for i in xrange(self.n_critic)]
  204. imgB_batch_list = [self.load_training_imgs(data_B, idx+i) for i in xrange(self.n_critic)]
  205. if self.use_labeled_data:
  206. imgPAB_batch_list = [self.load_pair_imgs(data_PAB, idx+i, batch_num_PAB) for i in xrange(self.n_critic)]
  207. else:
  208. imgPAB_batch_list = []
  209. print("Epoch: [%2d] [%4d/%4d]"%(epoch, idx, batch_idxs))
  210. counter = counter + 1
  211. self.run_optim(imgA_batch_list, imgB_batch_list, imgPAB_batch_list, counter, start_time)
  212. if np.mod(counter, 100) == 1:
  213. self.sample_shotcut(args.sample_dir, epoch, idx, batch_idxs)
  214. if np.mod(counter, args.save_latest_freq) == 2:
  215. self.save(args.checkpoint_dir, counter)
  216. def load_training_imgs(self, data, idx):
  217. batch_files = data[idx*self.batch_size:(idx+1)*self.batch_size]
  218. batch = [load_data(batch_file, image_size =self.image_size, flip = self.flip) for batch_file in batch_files]
  219. batch_images = np.reshape(np.array(batch).astype(np.float32),(self.batch_size,self.image_size, self.image_size,-1))
  220. return batch_images
  221. def load_pair_imgs(self, data, idx, total_num):
  222. idx = idx % total_num
  223. batch_files = data[idx*self.batch_size:(idx+1)*self.batch_size]
  224. batch = [load_data_pair(batch_file, img_size =self.image_size) for batch_file in batch_files]
  225. batch_imgs_AB = np.reshape(np.array(batch).astype(np.float32),(self.batch_size,self.image_size, self.image_size,-1))
  226. return batch_imgs_AB
  227. def run_optim(self,imgA_batch_list, imgB_batch_list,imgPAB_batch_list, counter, start_time):
  228. for i in xrange(self.n_critic):
  229. batch_A_images = imgA_batch_list[i]
  230. batch_B_images = imgB_batch_list[i]
  231. if self.use_labeled_data:
  232. batch_PAB_images = imgPAB_batch_list[i]
  233. _, Adfake,Adreal,Bdfake,Bdreal, Cdfake, Cdreal, Ad, Bd, Cd, summary_str = \
  234. self.sess.run([self.d_optim, self.A_d_loss_fake, self.A_d_loss_real, self.B_d_loss_fake, self.B_d_loss_real, self.C_d_loss_fake, self.C_d_loss_real, self.A_d_loss, self.B_d_loss, self.C_d_loss, self.d_loss_sum], \
  235. feed_dict = {self.real_A: batch_A_images, self.real_B: batch_B_images, self.real_PA:batch_PAB_images[:,:,:,0:self.input_channels_A], self.real_PB:batch_PAB_images[:,:,:,self.input_channels_A:]})
  236. else:
  237. _, Adfake,Adreal,Bdfake,Bdreal, Ad, Bd, summary_str = \
  238. self.sess.run([self.d_optim, self.A_d_loss_fake, self.A_d_loss_real, self.B_d_loss_fake, self.B_d_loss_real, self.A_d_loss, self.B_d_loss, self.d_loss_sum], \
  239. feed_dict = {self.real_A: batch_A_images, self.real_B: batch_B_images})
  240. #self.writer.add_summary(summary_str, counter)
  241. self.sess.run(self.clip_d_vars_ops)
  242. batch_A_images = imgA_batch_list[np.random.randint(self.n_critic, size=1)[0]]
  243. batch_B_images = imgB_batch_list[np.random.randint(self.n_critic, size=1)[0]]
  244. if self.use_labeled_data:
  245. batch_PAB_images = imgPAB_batch_list[np.random.randint(self.n_critic, size=1)[0]]
  246. _, Ag, Bg, gloss_pair, Aloss, Bloss, PAB_loss,\
  247. summary_str = self.sess.run([self.g_optim, self.A_g_loss, self.B_g_loss, \
  248. self.g_loss_pair, self.A_loss, self.B_loss, self.loss_PAB, self.g_loss_sum],\
  249. feed_dict={ self.real_A: batch_A_images, self.real_B: batch_B_images, \
  250. self.real_PA:batch_PAB_images[:,:,:,0:self.input_channels_A],\
  251. self.real_PB:batch_PAB_images[:,:,:,self.input_channels_A:]})
  252. else:
  253. _, Ag, Bg, Aloss, Bloss, summary_str = \
  254. self.sess.run([self.g_optim, self.A_g_loss, self.B_g_loss, self.A_loss, \
  255. self.B_loss, self.g_loss_sum], feed_dict={ self.real_A: batch_A_images, \
  256. self.real_B: batch_B_images})
  257. Cdfake = Cdreal = Cd = gloss_pair = PAB_loss = 0.0
  258. #self.writer.add_summary(summary_str, counter)
  259. print("time: %4.4f, A_d_loss: %.2f, A_g_loss: %.2f, B_d_loss: %.2f, B_g_loss: %.2f, C_d_loss: %.2f, g_loss_pair: %.2f, A_loss: %.5f, B_loss: %.5f, PAB_loss: %.5f" \
  260. % (time.time() - start_time, Ad,Ag,Bd,Bg, Cd, gloss_pair, \
  261. Aloss, Bloss, PAB_loss))
  262. print("A_d_loss_fake: %.2f, A_d_loss_real: %.2f, B_d_loss_fake: %.2f, B_g_loss_real: %.2f, C_d_loss_fake: %.2f, c_d_loss_real: %.2f" \
  263. % (Adfake,Adreal,Bdfake,Bdreal, Cdfake, Cdreal))
  264. def discriminator(self, image, y=None, prefix='A_', reuse=False):
  265. # image is 256 x 256 x (input_c_dim + output_c_dim)
  266. with tf.variable_scope(tf.get_variable_scope()) as scope:
  267. if reuse:
  268. scope.reuse_variables()
  269. else:
  270. assert scope.reuse == False
  271. h0 = lrelu(conv2d(image, self.df_dim, name=prefix+'d_h0_conv'))
  272. # h0 is (128 x 128 x self.df_dim)
  273. h1 = lrelu(batch_norm(conv2d(h0, self.df_dim*2, name=prefix+'d_h1_conv'), name = prefix+'d_bn1'))
  274. # h1 is (64 x 64 x self.df_dim*2)
  275. h2 = lrelu(batch_norm(conv2d(h1, self.df_dim*4, name=prefix+'d_h2_conv'), name = prefix+ 'd_bn2'))
  276. # h2 is (32x 32 x self.df_dim*4)
  277. h3 = lrelu(batch_norm(conv2d(h2, self.df_dim*8, d_h=1, d_w=1, name=prefix+'d_h3_conv'), name = prefix+ 'd_bn3'))
  278. # h3 is (16 x 16 x self.df_dim*8)
  279. h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, prefix+'d_h3_lin')
  280. return h4
  281. def A_d_net(self, imgs, y = None, reuse = False):
  282. return self.discriminator(imgs, prefix = 'A_', reuse = reuse)
  283. def B_d_net(self, imgs, y = None, reuse = False):
  284. return self.discriminator(imgs, prefix = 'B_', reuse = reuse)
  285. def C_d_net(self, imgs, y = None, reuse = False):
  286. return self.discriminator(imgs, prefix = 'C_', reuse = reuse)
  287. def A_g_net(self, imgs, reuse=False):
  288. return self.fcn(imgs, prefix='A_g_', reuse = reuse)
  289. def B_g_net(self, imgs, reuse=False):
  290. return self.fcn(imgs, prefix = 'B_g_', reuse = reuse)
  291. def fcn(self, imgs, prefix=None, reuse = False):
  292. with tf.variable_scope(tf.get_variable_scope()) as scope:
  293. if reuse:
  294. scope.reuse_variables()
  295. else:
  296. assert scope.reuse == False
  297. s = self.image_size
  298. s2, s4, s8, s16, s32, s64, s128 = int(s/2), int(s/4), int(s/8), int(s/16), int(s/32), int(s/64), int(s/128)
  299. # imgs is (256 x 256 x input_c_dim)
  300. e1 = conv2d(imgs, self.fcn_filter_dim, name=prefix+'e1_conv')
  301. # e1 is (128 x 128 x self.fcn_filter_dim)
  302. e2 = batch_norm(conv2d(lrelu(e1), self.fcn_filter_dim*2, name=prefix+'e2_conv'), name = prefix+'bn_e2')
  303. # e2 is (64 x 64 x self.fcn_filter_dim*2)
  304. e3 = batch_norm(conv2d(lrelu(e2), self.fcn_filter_dim*4, name=prefix+'e3_conv'), name = prefix+'bn_e3')
  305. # e3 is (32 x 32 x self.fcn_filter_dim*4)
  306. e4 = batch_norm(conv2d(lrelu(e3), self.fcn_filter_dim*8, name=prefix+'e4_conv'), name = prefix+'bn_e4')
  307. # e4 is (16 x 16 x self.fcn_filter_dim*8)
  308. e5 = batch_norm(conv2d(lrelu(e4), self.fcn_filter_dim*8, name=prefix+'e5_conv'), name = prefix+'bn_e5')
  309. # e5 is (8 x 8 x self.fcn_filter_dim*8)
  310. e6 = batch_norm(conv2d(lrelu(e5), self.fcn_filter_dim*8, name=prefix+'e6_conv'), name = prefix+'bn_e6')
  311. # e6 is (4 x 4 x self.fcn_filter_dim*8)
  312. e7 = batch_norm(conv2d(lrelu(e6), self.fcn_filter_dim*8, name=prefix+'e7_conv'), name = prefix+'bn_e7')
  313. # e7 is (2 x 2 x self.fcn_filter_dim*8)
  314. e8 = batch_norm(conv2d(lrelu(e7), self.fcn_filter_dim*8, name=prefix+'e8_conv'), name = prefix+'bn_e8')
  315. # e8 is (1 x 1 x self.fcn_filter_dim*8)
  316. self.d1, self.d1_w, self.d1_b = deconv2d(tf.nn.relu(e8),
  317. [self.batch_size, s128, s128, self.fcn_filter_dim*8], name=prefix+'d1', with_w=True)
  318. d1 = tf.nn.dropout(batch_norm(self.d1, name = prefix+'bn_d1'), 0.5)
  319. if int(self.network_type.split('_')[1]) < 128:
  320. d1 = tf.concat([d1, e7],3)
  321. # d1 is (2 x 2 x self.fcn_filter_dim*8*2)
  322. self.d2, self.d2_w, self.d2_b = deconv2d(tf.nn.relu(d1),
  323. [self.batch_size, s64, s64, self.fcn_filter_dim*8], name=prefix+'d2', with_w=True)
  324. d2 = tf.nn.dropout(batch_norm(self.d2, name = prefix+'bn_d2'), 0.5)
  325. if int(self.network_type.split('_')[1]) < 64:
  326. d2 = tf.concat([d2, e6],3)
  327. # d2 is (4 x 4 x self.fcn_filter_dim*8*2)
  328. self.d3, self.d3_w, self.d3_b = deconv2d(tf.nn.relu(d2),
  329. [self.batch_size, s32, s32, self.fcn_filter_dim*8], name=prefix+'d3', with_w=True)
  330. d3 = tf.nn.dropout(batch_norm(self.d3, name = prefix+'bn_d3'), 0.5)
  331. if int(self.network_type.split('_')[1]) < 32:
  332. d3 = tf.concat([d3, e5],3)
  333. # d3 is (8 x 8 x self.fcn_filter_dim*8*2)
  334. self.d4, self.d4_w, self.d4_b = deconv2d(tf.nn.relu(d3),
  335. [self.batch_size, s16, s16, self.fcn_filter_dim*8], name=prefix+'d4', with_w=True)
  336. d4 = batch_norm(self.d4, name = prefix+'bn_d4')
  337. if int(self.network_type.split('_')[1]) < 16:
  338. d4 = tf.concat([d4, e4],3)
  339. # d4 is (16 x 16 x self.fcn_filter_dim*8*2)
  340. self.d5, self.d5_w, self.d5_b = deconv2d(tf.nn.relu(d4),
  341. [self.batch_size, s8, s8, self.fcn_filter_dim*4], name=prefix+'d5', with_w=True)
  342. d5 = batch_norm(self.d5, name = prefix+'bn_d5')
  343. if int(self.network_type.split('_')[1]) < 8:
  344. d5 = tf.concat([d5, e3],3)
  345. # d5 is (32 x 32 x self.fcn_filter_dim*4*2)
  346. self.d6, self.d6_w, self.d6_b = deconv2d(tf.nn.relu(d5),
  347. [self.batch_size, s4, s4, self.fcn_filter_dim*2], name=prefix+'d6', with_w=True)
  348. d6 = batch_norm(self.d6, name = prefix+'bn_d6')
  349. if int(self.network_type.split('_')[1]) < 4:
  350. d6 = tf.concat([d6, e2],3)
  351. # d6 is (64 x 64 x self.fcn_filter_dim*2*2)
  352. self.d7, self.d7_w, self.d7_b = deconv2d(tf.nn.relu(d6),
  353. [self.batch_size, s2, s2, self.fcn_filter_dim], name=prefix+'d7', with_w=True)
  354. d7 = batch_norm(self.d7, name = prefix+'bn_d7')
  355. if int(self.network_type.split('_')[1]) < 2:
  356. d7 = tf.concat([d7, e1],3)
  357. # d7 is (128 x 128 x self.fcn_filter_dim*1*2)
  358. if prefix == 'B_g_':
  359. self.d8, self.d8_w, self.d8_b = deconv2d(tf.nn.relu(d7),[self.batch_size, s, s, self.input_channels_A], name=prefix+'d8', with_w=True)
  360. elif prefix == 'A_g_':
  361. self.d8, self.d8_w, self.d8_b = deconv2d(tf.nn.relu(d7),
  362. [self.batch_size, s, s, self.input_channels_B], name=prefix+'d8', with_w=True)
  363. # d8 is (256 x 256 x output_c_dim)
  364. return tf.nn.tanh(self.d8)
  365. def save(self, checkpoint_dir, step):
  366. model_name = "DualNet.model"
  367. model_dir = self.dir_name
  368. checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
  369. if not os.path.exists(checkpoint_dir):
  370. os.makedirs(checkpoint_dir)
  371. self.saver.save(self.sess,
  372. os.path.join(checkpoint_dir, model_name),
  373. global_step=step)
  374. def load(self, checkpoint_dir):
  375. print(" [*] Reading checkpoint...")
  376. model_dir = self.dir_name
  377. checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
  378. ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
  379. if ckpt and ckpt.model_checkpoint_path:
  380. ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
  381. self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
  382. return True
  383. else:
  384. return False
  385. def test(self, args):
  386. """Test DualNet"""
  387. start_time = time.time()
  388. tf.global_variables_initializer().run()
  389. if self.load(self.checkpoint_dir):
  390. print(" [*] Load SUCCESS")
  391. test_dir = './{}/{}'.format(args.test_dir, self.dir_name)
  392. if not os.path.exists(test_dir):
  393. os.makedirs(test_dir)
  394. test_log = open(test_dir+'evaluation.txt','a')
  395. test_log.write(self.dir_name)
  396. try:
  397. self.test_domain(args, test_log, type = 'AB')
  398. except ValueError:
  399. self.test_domain(args, test_log, type = 'A')
  400. self.test_domain(args, test_log, type = 'B')
  401. test_log.close()
  402. else:
  403. print(" [!] Load failed...")
  404. def test_domain(self, args, test_log, type = 'A'):
  405. sample_files = glob('./datasets/{}/val/{}/*.jpg'.format(self.dataset_name,type))
  406. try:
  407. n = [int(i) for i in map(lambda x: x.split('/')[-1].split('.jpg')[0], sample_files)]
  408. sample_files = [x for (y, x) in sorted(zip(n, sample_files))]
  409. except:
  410. try:
  411. n = [int(i) for i in map(lambda x: x.split('/')[-1].split('.jpg')[0].split('_')[1], sample_files)]
  412. sample_files = [x for (y, x) in sorted(zip(n, sample_files))]
  413. except:
  414. try:
  415. n = [int(i) for i in map(lambda x: x.split('/')[-1].split(').jpg')[0].split('(')[0], sample_files)]
  416. sample_files = [x for (y, x) in sorted(zip(n, sample_files))]
  417. except:
  418. n = [int(i) for i in map(lambda x: x.split('/')[-1].split(').jpg')[0].split('(')[1], sample_files)]
  419. sample_files = [x for (y, x) in sorted(zip(n, sample_files))]
  420. # load testing input
  421. print("Loading testing images ...")
  422. if type != 'AB':
  423. sample = [load_data(sample_file, is_test=True, image_size =self.image_size, flip = args.flip) for sample_file in sample_files]
  424. else:
  425. sample = [load_data_pair(sample_file, img_size =self.image_size) for sample_file in sample_files]
  426. sample_images = np.reshape(np.array(sample).astype(np.float32),(len(sample_files),self.image_size, self.image_size,-1))
  427. sample_images = [sample_images[i:i+self.batch_size]
  428. for i in xrange(0, len(sample_images), self.batch_size)]
  429. sample_images = np.array(sample_images)
  430. print(sample_images.shape)
  431. # test input samples
  432. if type == 'A':
  433. aloss_sum = 0.0;
  434. a_d_loss_sum = 0.0
  435. b_d_realloss_sum = 0.0
  436. for i in xrange(0, len(sample_images), self.batch_size):
  437. idx = i+1
  438. sample_A_img = np.reshape(np.array(sample_images[i:i+self.batch_size]), (self.batch_size,self.image_size, self.image_size,-1))
  439. print("sampling A image ", idx)
  440. translated_A_value, recover_A_value, aloss, a_d_loss, b_d_realloss = self.sess.run(
  441. [self.translated_A, self.recover_A, self.A_loss, self.A_d_loss_fake, self.B_d_loss_real],
  442. feed_dict={self.real_A: sample_A_img}
  443. )
  444. aloss_sum = aloss_sum+ aloss
  445. a_d_loss_sum = a_d_loss_sum + a_d_loss
  446. b_d_realloss_sum = b_d_realloss_sum + b_d_realloss
  447. save_images(sample_A_img, [self.batch_size, 1],
  448. './{}/{}/{:04d}_test_real_A.png'.format(args.test_dir, self.dir_name,idx))
  449. save_images(translated_A_value, [self.batch_size, 1],
  450. './{}/{}/{:04d}_test_translated_A.png'.format(args.test_dir, self.dir_name,idx))
  451. save_images(recover_A_value, [self.batch_size, 1],
  452. './{}/{}/{:04d}_test_recover_A.png'.format(args.test_dir, self.dir_name,idx))
  453. test_log.write('recovery loss of A: %06f \n'%(aloss_sum/sample_images.shape[0]))
  454. test_log.write('D_A loss of fake:%.2f \n'%(a_d_loss_sum/sample_images.shape[0]))
  455. test_log.write('D_B loss of real:%.2f \n'%(-b_d_realloss_sum/sample_images.shape[0]))
  456. elif type=='B':
  457. bloss_sum = 0.0
  458. b_d_loss_sum = 0.0
  459. a_d_realloss_sum = 0.0
  460. for i in xrange(0, len(sample_images), self.batch_size):
  461. idx = i+1
  462. sample_B_img = np.reshape(np.array(sample_images[i:i+self.batch_size]), (self.batch_size,self.image_size, self.image_size,-1))
  463. print("sampling B image ", idx)
  464. translated_B_value, recover_B_value, bloss, b_d_loss, a_d_realloss = self.sess.run(
  465. [self.translated_B, self.recover_B, self.B_loss, self.B_d_loss_fake, self.A_d_loss_real],
  466. feed_dict={self.real_B:sample_B_img}
  467. )
  468. bloss_sum = bloss_sum+ bloss
  469. b_d_loss_sum = b_d_loss_sum + b_d_loss
  470. a_d_realloss_sum =a_d_realloss_sum + a_d_realloss
  471. save_images(sample_B_img, [self.batch_size, 1],
  472. './{}/{}/{:04d}_test_real_B.png'.format(args.test_dir, self.dir_name,idx))
  473. save_images(translated_B_value, [self.batch_size, 1],
  474. './{}/{}/{:04d}_test_translated_B.png'.format(args.test_dir, self.dir_name,idx))
  475. save_images(recover_B_value, [self.batch_size, 1],
  476. './{}/{}/{:04d}_test_recover_B.png'.format(args.test_dir, self.dir_name,idx))
  477. test_log.write('recovery loss of B: %06f\n'%(bloss_sum/sample_images.shape[0]))
  478. test_log.write('D_B loss of fake:%.2f\n'%(b_d_loss_sum/sample_images.shape[0]))
  479. test_log.write('D_A loss of real:%.2f\n'%(-a_d_realloss_sum/sample_images.shape[0]))
  480. elif type == 'AB':
  481. aloss_sum = a_d_loss_sum = b_d_realloss_sum = 0.0
  482. bloss_sum = b_d_loss_sum = a_d_realloss_sum = 0.0
  483. print(sample_images.shape)
  484. for i in xrange(0, len(sample_images), self.batch_size):
  485. idx = i+1
  486. Aimgs = np.array(sample_images[i:i+self.batch_size,:,:,:,0:self.input_channels_A])
  487. print(Aimgs.shape)
  488. sample_A_img = np.reshape(Aimgs, (self.batch_size,self.image_size, self.image_size,-1))
  489. print("sampling A image ", idx)
  490. translated_A_value, recover_A_value, aloss, a_d_loss, b_d_realloss = self.sess.run(
  491. [self.translated_A, self.recover_A, self.A_loss, self.A_d_loss_fake, self.B_d_loss_real],
  492. feed_dict={self.real_A: sample_A_img}
  493. )
  494. aloss_sum = aloss_sum+ aloss
  495. a_d_loss_sum = a_d_loss_sum + a_d_loss
  496. b_d_realloss_sum = b_d_realloss_sum + b_d_realloss
  497. save_images(sample_A_img, [self.batch_size, 1],
  498. './{}/{}/{:04d}_test_real_A.png'.format(args.test_dir, self.dir_name,idx))
  499. save_images(translated_A_value, [self.batch_size, 1],
  500. './{}/{}/{:04d}_test_translated_A.png'.format(args.test_dir, self.dir_name,idx))
  501. save_images(recover_A_value, [self.batch_size, 1],
  502. './{}/{}/{:04d}_test_recover_A.png'.format(args.test_dir, self.dir_name,idx))
  503. test_log.write('recovery loss of A: %06f \n'%(aloss_sum/sample_images.shape[0]))
  504. test_log.write('D_A loss of fake:%.2f \n'%(a_d_loss_sum/sample_images.shape[0]))
  505. test_log.write('D_B loss of real:%.2f \n'%(-b_d_realloss_sum/sample_images.shape[0]))
  506. for i in xrange(0, len(sample_images), self.batch_size):
  507. idx = i+1
  508. sample_B_img = np.reshape(np.array(sample_images[i:i+self.batch_size,:,:,:,self.input_channels_A:]), (self.batch_size,self.image_size, self.image_size,-1))
  509. print("sampling B image ", idx)
  510. translated_B_value, recover_B_value, bloss, b_d_loss, a_d_realloss = self.sess.run(
  511. [self.translated_B, self.recover_B, self.B_loss, self.B_d_loss_fake, self.A_d_loss_real],
  512. feed_dict={self.real_B:sample_B_img}
  513. )
  514. bloss_sum = bloss_sum+ bloss
  515. b_d_loss_sum = b_d_loss_sum + b_d_loss
  516. a_d_realloss_sum =a_d_realloss_sum + a_d_realloss
  517. save_images(sample_B_img, [self.batch_size, 1],
  518. './{}/{}/{:04d}_test_real_B.png'.format(args.test_dir, self.dir_name,idx))
  519. save_images(translated_B_value, [self.batch_size, 1],
  520. './{}/{}/{:04d}_test_translated_B.png'.format(args.test_dir, self.dir_name,idx))
  521. save_images(recover_B_value, [self.batch_size, 1],
  522. './{}/{}/{:04d}_test_recover_B.png'.format(args.test_dir, self.dir_name,idx))
  523. test_log.write('recovery loss of B: %06f \n'%(bloss_sum/sample_images.shape[0]))
  524. test_log.write('D_B loss of fake:%.2f \n'%(b_d_loss_sum/sample_images.shape[0]))
  525. test_log.write('D_A loss of real:%.2f \n'%(-a_d_realloss_sum/sample_images.shape[0]))
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...