Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

fitcircle.rst 5.4 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
  1. .. index:: ! fitcircle
  2. .. include:: module_core_purpose.rst_
  3. *********
  4. fitcircle
  5. *********
  6. |fitcircle_purpose|
  7. Synopsis
  8. --------
  9. .. include:: common_SYN_OPTs.rst_
  10. **gmt fitcircle** [ *table* ] |-L|\ *norm* [ |-F|\ *flags* ] [ |-S|\ [*lat*] ]
  11. [ |SYN_OPT-V| ]
  12. [ |SYN_OPT-a| ]
  13. [ |SYN_OPT-bi| ]
  14. [ |SYN_OPT-di| ]
  15. [ |SYN_OPT-e| ]
  16. [ |SYN_OPT-f| ]
  17. [ |SYN_OPT-g| ]
  18. [ |SYN_OPT-h| ]
  19. [ |SYN_OPT-i| ]
  20. [ |SYN_OPT-o| ]
  21. [ |SYN_OPT-q| ]
  22. [ |SYN_OPT-:| ]
  23. [ |SYN_OPT--| ]
  24. |No-spaces|
  25. Description
  26. -----------
  27. **fitcircle** reads lon,lat [or lat,lon] values from the first two
  28. columns on standard input [or *table*]. These are converted to
  29. Cartesian three-vectors on the unit sphere. Then two locations are
  30. found: the mean of the input positions, and the pole to the great circle
  31. which best fits the input positions. The user may choose one or both of
  32. two possible solutions to this problem. The first is called **-L1** and
  33. the second is called **-L2**. When the data are closely grouped along a
  34. great circle both solutions are similar. If the data have large
  35. dispersion, the pole to the great circle will be less well determined
  36. than the mean. Compare both solutions as a qualitative check.
  37. The **-L1** solution is so called because it approximates the
  38. minimization of the sum of absolute values of cosines of angular
  39. distances. This solution finds the mean position as the Fisher average
  40. of the data, and the pole position as the Fisher average of the
  41. cross-products between the mean and the data. Averaging cross-products
  42. gives weight to points in proportion to their distance from the mean,
  43. analogous to the "leverage" of distant points in linear regression in the plane.
  44. The **-L2** solution is so called because it approximates the
  45. minimization of the sum of squares of cosines of angular distances. It
  46. creates a 3 by 3 matrix of sums of squares of components of the data
  47. vectors. The eigenvectors of this matrix give the mean and pole
  48. locations. This method may be more subject to roundoff errors when there
  49. are thousands of data. The pole is given by the eigenvector
  50. corresponding to the smallest eigenvalue; it is the least-well
  51. represented factor in the data and is not easily estimated by either method.
  52. Required Arguments
  53. ------------------
  54. .. _-L:
  55. **-L**\ *norm*
  56. Specify the desired *norm* as 1 or 2, or use **-L** or **-L3** to
  57. see both solutions.
  58. Optional Arguments
  59. ------------------
  60. *table*
  61. One or more ASCII [or binary, see **-bi**] files containing lon,lat [or lat,lon; see
  62. **-:**\ [**i**\|\ **o**]] values in the first 2 columns. If no
  63. file is specified, **fitcircle** will read from standard input.
  64. .. _-F:
  65. **-F**\ *flags*
  66. Traditionally, **fitcircle** will write its results in the form of a text report, with
  67. the values intermingled with report sentences. Use **-F** to only return data
  68. coordinates, and append *flags* to specify which coordinates you would like. You
  69. can choose one or more items from **f** (Flat Earth mean location), **m** (mean location),
  70. **n** (north pole of great circle), **s** (south pole of great circle), and
  71. **c** (pole of small circle and its colatitude, which requires **-S**).
  72. .. _-S:
  73. **-S**\ [*lat*]
  74. Attempt to fit a small circle instead of a great circle. The pole
  75. will be constrained to lie on the great circle connecting the pole
  76. of the best-fit great circle and the mean location of the data.
  77. Optionally append the desired fixed latitude of the small circle
  78. [Default will determine the optimal latitude].
  79. .. _-V:
  80. .. |Add_-V| unicode:: 0x20 .. just an invisible code
  81. .. include:: explain_-V.rst_
  82. .. |Add_-a| unicode:: 0x20 .. just an invisible code
  83. .. include:: explain_-aspatial.rst_
  84. .. |Add_-bi| replace:: [Default is 2 input columns].
  85. .. include:: explain_-bi.rst_
  86. .. |Add_-di| unicode:: 0x20 .. just an invisible code
  87. .. include:: explain_-di.rst_
  88. .. |Add_-e| unicode:: 0x20 .. just an invisible code
  89. .. include:: explain_-e.rst_
  90. .. |Add_-f| unicode:: 0x20 .. just an invisible code
  91. .. include:: explain_-f.rst_
  92. .. |Add_-g| unicode:: 0x20 .. just an invisible code
  93. .. include:: explain_-g.rst_
  94. .. |Add_-h| unicode:: 0x20 .. just an invisible code
  95. .. include:: explain_-h.rst_
  96. .. include:: explain_-icols.rst_
  97. .. include:: explain_-ocols.rst_
  98. .. include:: explain_-q.rst_
  99. .. include:: explain_colon.rst_
  100. .. include:: explain_help.rst_
  101. .. include:: explain_precision.rst_
  102. Examples
  103. --------
  104. .. include:: explain_example.rst_
  105. To find the parameters of a great circle that most closely fits the (lon,lat)
  106. points in the remote file @sat_03.txt in a least-squares sense, try::
  107. gmt fitcircle @sat_03.txt -L2 -Fm
  108. Suppose you have lon,lat,grav data along a twisty ship track in the file
  109. ship.xyg. You want to project this data onto a great circle and resample
  110. it in distance, in order to filter it or check its spectrum. Do the
  111. following:
  112. ::
  113. gmt fitcircle ship.xyg -L2
  114. gmt project ship.xyg -Cox/oy -Tpx/py -S -Fpz | gmt sample1d -S-100 -I1 > output.pg
  115. Here, *ox*/*oy* is the lon/lat of the mean from **fitcircle**, and
  116. *px*/*py* is the lon/lat of the pole. The file output.pg has distance,
  117. gravity data sampled every 1 km along the great circle which best fits
  118. ship.xyg
  119. If you have lon, lat points in the file data.txt and wish to return the northern
  120. hemisphere great circle pole location using the L2 norm, try
  121. ::
  122. gmt fitcircle data.txt -L2 -Fn > pole.txt
  123. See Also
  124. --------
  125. :doc:`gmt`,
  126. :doc:`gmtvector`,
  127. :doc:`project`,
  128. :doc:`mapproject`,
  129. :doc:`sample1d`
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...