Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

GMT_Chapter_6.tex 54 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
  1. %------------------------------------------
  2. % $Id$
  3. %
  4. % The GMT Documentation Project
  5. % Copyright (c) 2000-2012.
  6. % P. Wessel, W. H. F. Smith, R. Scharroo, and J. Luis
  7. %------------------------------------------
  8. %
  9. \chapter{\gmt\ Map Projections}
  10. \label{ch:6}
  11. \GMT\ implements more than 30 different projections. They all project the input coordinates
  12. longitude and latitude to positions on a map. In general, $x' = f(x,y,z)$ and $y' = g(x,y,z)$, where
  13. $z$ is implicitly given as the radial vector length to the $(x,y)$ point on the chosen ellipsoid. The functions $f$ and $g$ can be
  14. quite nasty and we will refrain from presenting details in this document. The interested read is referred to
  15. \emph{Snyder} [1987]\footnote{Snyder, J. P., 1987, Map Projections \- A Working Manual, U.S. Geological Survey Prof. Paper 1395.}.
  16. We will mostly be using the \GMTprog{pscoast} command to demonstrate each of the projections.
  17. \GMT\ map projections are grouped into four categories depending on the
  18. nature of the projection. The groups are
  19. \begin{enumerate}
  20. \item Conic map projections
  21. \item Azimuthal map projections
  22. \item Cylindrical map projections
  23. \item Miscellaneous projections
  24. \end{enumerate}
  25. Because $x$ and $y$ are coupled we can only specify one plot-dimensional scale, typically
  26. a map \emph{scale} (for lower-case map projection code) or a map \emph{width} (for upper-case
  27. map projection code). However, in some cases it would be more
  28. practical to specify map \emph{height} instead of \emph{width}, while in other situations it would be nice
  29. to set either the \emph{shortest} or \emph{longest} map dimension. Users may select
  30. these alternatives by appending a character code to their map dimension. To specify map \emph{height},
  31. append \textbf{h} to the given dimension; to select the minimum map dimension, append \textbf{-}, whereas you may
  32. append \textbf{+} to select the maximum map dimension. Without the modifier the map width is
  33. selected by default.
  34. In \GMT\ version 4.3.0 we noticed we ran out of the alphabet for 1-letter (and sometimes 2-letter) projection codes. To allow more flexibility, and to make it easier to remember the codes, we implemented the option to use the abbreviations used by the \progname{Proj4} mapping package. Since some of the \GMT\ projections are not in \progname{Proj4}, we invented some of our own as well. For a full list of both the old 1- and 2-letter codes, as well as the \progname{Proj4}-equivalents see the quick reference cards in Section~\ref{sec:purpose}. For example, \Opt{JM15c} and \Opt{JMerc/15c} have the same meaning.
  35. \section{Conic projections}
  36. \index{Projection!conic|(}
  37. \index{Conic projections|(}
  38. \subsection{Albers conic equal-area projection (\Opt{Jb} \Opt{JB})}
  39. \index{Projection!conic!Albers \Opt{Jb} \Opt{JB}|(}
  40. \index{Albers conic projection \Opt{Jb} \Opt{JB}|(}
  41. \index{\Opt{Jb} \Opt{JB} (Albers)|(}
  42. This projection, developed by Albers in 1805, is predominantly
  43. used to map regions of large east-west extent, in particular
  44. the United States. It is a conic, equal-area projection, in
  45. which parallels are unequally spaced arcs of concentric circles,
  46. more closely spaced at the north and south edges of the map.
  47. Meridians, on the other hand, are equally spaced radii about
  48. a common center, and cut the parallels at right angles.
  49. Distortion in scale and shape vanishes along the two standard
  50. parallels. Between them, the scale along parallels is too small;
  51. beyond them it is too large. The opposite is true for the scale
  52. along meridians. To define the projection in \GMT\ you need to
  53. provide the following information:
  54. \begin{itemize}
  55. \item Longitude and latitude of the projection center.
  56. \item Two standard parallels.
  57. \item Map scale in inch/degree or 1:xxxxx notation (\Opt{Jb}), or map width (\Opt{JB}).
  58. \end{itemize}
  59. Note that you must include the ``1:'' if you choose to specify the
  60. scale that way. E.g., you can say 0.5 which means 0.5 inch/degree
  61. or 1:200000 which means 1 inch on the map equals 200,000 inches
  62. along the standard parallels. The projection center defines the
  63. origin of the rectangular map coordinates. As an example we will
  64. make a map of the region near Taiwan. We choose the center of
  65. the projection to be at 125 \DS E/20 \DS N and 25 \DS N
  66. and 45 \DS N as our two standard parallels. We desire a map
  67. that is 5 inches wide. The complete command needed to generate
  68. the map below is therefore given by:
  69. \script{GMT_albers}
  70. \GMTfig[h]{GMT_albers}{Albers equal-area conic map projection}
  71. \index{Projection!conic!Albers \Opt{Jb} \Opt{JB}|)}
  72. \index{Albers conic projection \Opt{Jb} \Opt{JB}|)}
  73. \index{\Opt{Jb} \Opt{JB} (Albers)|)}
  74. \subsection{Equidistant conic projection (\Opt{Jd} \Opt{JD})}
  75. \index{Projection!conic!Equidistant \Opt{Jd} \Opt{JD}|(}
  76. \index{Equidistant conic projection \Opt{Jd} \Opt{JD}|(}
  77. \index{\Opt{Jd} \Opt{JD} (Equidistant conic)|(}
  78. The equidistant conic projection was described by the Greek
  79. philosopher Claudius Ptolemy about A.D.\ 150. It is neither
  80. conformal or equal-area, but serves as a compromise between them.
  81. The scale is true along all meridians and the standard parallels.
  82. To select this projection in \GMT\ you must
  83. provide the same information as for the other conic projection, i.e.
  84. \begin{itemize}
  85. \item Longitude and latitude of the projection center.
  86. \item Two standard parallels.
  87. \item Map scale in inch/degree or 1:xxxxx notation (\Opt{Jd}), or map width (\Opt{JD}).
  88. \end{itemize}
  89. The equidistant conic projection is often used for atlases with
  90. maps of small countries. As an example, we generate a map of
  91. Cuba:
  92. \script{GMT_equidistant_conic}
  93. \GMTfig[h]{GMT_equidistant_conic}{Equidistant conic map projection}
  94. \index{Projection!conic!Equidistant \Opt{Jd} \Opt{JD}|)}
  95. \index{Equidistant conic projection \Opt{Jd} \Opt{JD}|)}
  96. \index{\Opt{Jd} \Opt{JD} (Equidistant conic)|)}
  97. \subsection{Lambert conic conformal projection (\Opt{Jl} \Opt{JL})}
  98. \index{Projection!conic!Lambert \Opt{Jl} \Opt{JL}|(}
  99. \index{Lambert conic projection \Opt{Jl} \Opt{JL}|(}
  100. \index{\Opt{Jl} \Opt{JL} (Lambert conic)|(}
  101. This conic projection was designed by the Alsatian mathematician Johann Heinrich Lambert (1772) and has been
  102. used extensively for mapping of regions with predominantly east-west
  103. orientation, just like the Albers projection. Unlike the Albers
  104. projection, Lambert's conformal projection is not equal-area.
  105. The parallels are arcs of circles with a common origin, and
  106. meridians are the equally spaced radii of these circles. As with
  107. Albers projection, it is only the two standard parallels that are
  108. distortion-free. To select this projection in \GMT\ you must
  109. provide the same information as for the Albers projection, i.e.
  110. \begin{itemize}
  111. \item Longitude and latitude of the projection center.
  112. \item Two standard parallels.
  113. \item Map scale in inch/degree or 1:xxxxx notation (\Opt{Jl}), or map width (\Opt{JL}).
  114. \end{itemize}
  115. The Lambert conformal projection has been used for basemaps for all
  116. the 48 contiguous States with the two fixed standard parallels
  117. 33\DS N and 45\DS N. We will generate a map of the continental
  118. USA using these parameters. Note that with all the projections you
  119. have the option of selecting a rectangular border rather than one
  120. defined by meridians and parallels. Here, we choose the regular WESN
  121. region, a ``fancy'' basemap frame, and use degrees west for longitudes.
  122. The generating commands used were
  123. \script{GMT_lambert_conic}
  124. \GMTfig[h]{GMT_lambert_conic}{Lambert conformal conic map projection}
  125. The choice for projection center does not affect the projection but
  126. it indicates which meridian (here 100\DS W) will be vertical on
  127. the map. The standard parallels were originally selected by Adams
  128. to provide a maximum scale error between latitudes 30.5\DS N and
  129. 47.5\DS N of 0.5--1\%. Some areas, like Florida, experience scale
  130. errors of up to 2.5\%.
  131. \index{Projection!conic!Lambert \Opt{Jl} \Opt{JL}|)}
  132. \index{Lambert conic projection \Opt{Jl} \Opt{JL}|)}
  133. \index{\Opt{Jl} \Opt{JL} (Lambert conic)|)}
  134. \subsection{(American) polyconic projection (\Opt{Jpoly} \Opt{JPoly}}
  135. \index{Projection!conic!polyconic \Opt{Jpoly} \Opt{JPoly}|(}
  136. \index{Polyconic projection \Opt{Jpoly} \Opt{JPoly}|(}
  137. \index{\Opt{Jpoly} \Opt{JPoly} (Polyconic)|(}
  138. The polyconic projection, in Europe usually referred to as the American polyconic projection, was introduced shortly before 1820 by the Swiss-American cartographer Ferdinand Rodulph Hassler (1770-1843). As head of the Survey of the Coast, he was looking for a projection that would give the least distortion for mapping the coast of the United States. The projection acquired its name from the construction of each parallel, which is achieved by projecting the parallel onto the cone while it is rolled around the globe, along the central meridian, tangent to that parallel. As a consequence, the projection involves many cones rather than a single one used in regular conic projections.
  139. The polyconic projection is neither equal-area, nor conformal. It is true to scale without distortion along the central meridian. Each parallel is true to scale as well, but the meridians are not as they get further away from the central meridian. As a consequence, no parallel is standard because conformity is lost with the lengthening of the meridians.
  140. Below we reproduce the illustration by \emph{Snyder} [1987], with a gridline every 10\DS{} and annotations only every 30\DS{} in longitude:
  141. \script{GMT_polyconic}
  142. \GMTfig[h]{GMT_polyconic}{(American) polyconic projection}
  143. \index{Projection!conic!polyconic \Opt{Jpoly} \Opt{JPoly}|)}
  144. \index{Polyconic projection \Opt{Jpoly} \Opt{JPoly}|)}
  145. \index{\Opt{Jpoly} \Opt{JPoly} (Polyconic)|)}
  146. \index{Projection!conic|)}
  147. \index{Conic projections|)}
  148. \clearpage
  149. \section{Azimuthal projections}
  150. \index{Azimuthal projections|(}
  151. \index{Projection!azimuthal|(}
  152. \subsection{Lambert Azimuthal Equal-Area (\Opt{Ja} \Opt{JA})}
  153. \index{Projection!azimuthal!Lambert \Opt{Ja} \Opt{JA}|(}
  154. \index{Lambert azimuthal projection \Opt{Ja} \Opt{JA}|(}
  155. \index{\Opt{Ja} \Opt{JA} (Lambert azimuthal)|(}
  156. This projection was developed by Lambert in 1772 and is
  157. typically used for mapping large regions like continents
  158. and hemispheres. It is an azimuthal, equal-area projection,
  159. but is not perspective. Distortion is zero at the center
  160. of the projection, and increases radially away from this
  161. point. To define this projection in \GMT\ you must provide
  162. the following information:
  163. \begin{itemize}
  164. \item Longitude and latitude of the projection center.
  165. \item Optionally, the horizon, i.e., the number of degrees from the center to the edge ($\le$180\DS, default is 90\DS).
  166. \item Scale as 1:xxxxx or as radius/latitude where radius
  167. is the projected distance on the map from projection center to an oblique
  168. latitude (\Opt{Ja}), or map width (\Opt{JA}).
  169. \end{itemize}
  170. Two different types of maps can be made with this projection
  171. depending on how the region is specified. We will give
  172. examples of both types.
  173. \subsubsection{Rectangular map}
  174. \index{Region!rectangular}
  175. \index{Region!geographical}
  176. In this mode we define our region by specifying the
  177. longitude/latitude of the lower left and upper right corners
  178. instead of the usual \emph{west, east, south, north} boundaries.
  179. The reason for specifying our area this way is that for this
  180. and many other projections, lines of equal longitude and
  181. latitude are not straight lines and are thus poor choices for
  182. map boundaries. Instead we require that the map boundaries be
  183. rectangular by defining the corners of a rectangular map boundary.
  184. Using 0\DS E/40\DS S (lower left) and 60\DS E/10\DS S
  185. (upper right) as our corners we try\par
  186. \script{GMT_lambert_az_rect}
  187. \GMTfig[h]{GMT_lambert_az_rect}{Rectangular map using the Lambert
  188. azimuthal equal-area projection.}
  189. Note that an ``r'' is appended to the \Opt{R} option to inform
  190. \GMT\ that the region has been selected using the rectangle
  191. technique, otherwise it would try to decode the values as
  192. \emph{west, east, south, north} and report an error since
  193. \emph{'east'} $<$ \emph{'west'}.
  194. \subsubsection{Hemisphere map}
  195. \index{Hemisphere map}
  196. \label{sec:lamb}
  197. Here, you must specify the world as your region (\Opt{Rg} or \Opt{Rd}).
  198. E.g., to obtain a hemisphere view that shows the Americas, try
  199. \script{GMT_lambert_az_hemi}
  200. \GMTfig[h]{GMT_lambert_az_hemi}{Hemisphere map using the Lambert
  201. azimuthal equal-area projection.}
  202. To geologists, the Lambert azimuthal equal-area projection (with
  203. origin at 0\DS /0\DS ) is known as the \emph{equal-area}
  204. (Schmidt) stereonet and used for plotting fold axes, fault planes,
  205. and the like. An \emph{equal-angle} (Wulff) stereonet can
  206. be obtained by using the stereographic projection (discussed later).
  207. The stereonets produced by these two projections appear below.\par
  208. \GMTfig[h]{GMT_stereonets}{Equal-Area (Schmidt) and Equal-Angle (Wulff) stereo nets.}
  209. \index{Stereonet!Schmidt equal-area}
  210. \index{Stereonet!Wulff equal-angle}
  211. \index{Projection!azimuthal!Lambert \Opt{Ja} \Opt{JA}|)}
  212. \index{Lambert azimuthal projection \Opt{Ja} \Opt{JA}|)}
  213. \index{\Opt{Ja} \Opt{JA} (Lambert azimuthal)|)}
  214. \subsection{Stereographic Equal-Angle projection (\Opt{Js} \Opt{JS})}
  215. \index{Projection!azimuthal!stereographic \Opt{Js} \Opt{JS}|(}
  216. \index{Stereographic projection \Opt{Js} \Opt{JS}|(}
  217. \index{\Opt{Js} \Opt{JS} (Stereographic)|(}
  218. This is a conformal, azimuthal projection that dates back to the
  219. Greeks. Its main use is for mapping the polar regions. In
  220. the polar aspect all meridians are straight lines and parallels
  221. are arcs of circles. While this is the most common use it is
  222. possible to select any point as the center of projection. The
  223. requirements are
  224. \begin{itemize}
  225. \item Longitude and latitude of the projection center.
  226. \item Optionally, the horizon, i.e., the number of degrees from the center to the edge ($<$180\DS, default is 90\DS).
  227. \item Scale as 1:xxxxx (true scale at pole), slat/1:xxxxx
  228. (true scale at standard parallel slat), or radius/latitude where
  229. radius is distance on map in inches from projection center to
  230. a particular [possibly oblique] latitude (\Opt{Js}), or simply map
  231. width (\Opt{JS}).
  232. \end{itemize}
  233. A default map scale factor of 0.9996 will be applied by default
  234. (although you may change this with \textbf{PROJ\_SCALE\_FACTOR}).
  235. However, the setting is ignored when a standard
  236. parallel has been specified since the scale is then implicitly given.
  237. We will look at two different types of maps.
  238. \subsubsection{Polar Stereographic Map}
  239. \index{Projection!azimuthal!polar}
  240. In our first example we will let the projection center be at
  241. the north pole. This means we have a polar stereographic
  242. projection and the map boundaries will coincide with lines
  243. of constant longitude and latitude. An example is given by
  244. \script{GMT_stereographic_polar}
  245. \GMTfig[h]{GMT_stereographic_polar}{Polar
  246. stereographic conformal projection.}
  247. \subsubsection{Rectangular stereographic map}
  248. \index{Projection!stereographic!rectangular}
  249. As with Lambert's azimuthal equal-area projection we have
  250. the option to use rectangular boundaries rather than the
  251. wedge-shape typically associated with polar projections.
  252. This choice is defined by selecting two points as corners
  253. in the rectangle and appending an ``r'' to the \Opt{R} option.
  254. This command produces a map as presented in
  255. Figure~\ref{fig:GMT_stereographic_rect}:
  256. \script{GMT_stereographic_rect}
  257. \GMTfig[h]{GMT_stereographic_rect}{Polar
  258. stereographic conformal projection with rectangular borders.}
  259. \subsubsection{General stereographic map}
  260. \index{Projection!stereographic!general}
  261. In terms of usage this projection is identical to the Lambert
  262. azimuthal equal-area projection. Thus, one can make both
  263. rectangular and hemispheric maps. Our example shows Australia
  264. using a projection pole at 130E/30\DS S. The command used was
  265. \script{GMT_stereographic_general}
  266. \GMTfig[H]{GMT_stereographic_general}{General
  267. stereographic conformal projection with rectangular borders.}
  268. By choosing 0\DS/0\DS as the pole, we obtain the conformal
  269. stereonet presented next to its equal-area cousin in the Section~\ref{sec:lamb} on
  270. the Lambert azimuthal equal-area projection (Figure~\ref{fig:GMT_stereonets}).
  271. \index{Projection!azimuthal!stereographic \Opt{Js} \Opt{JS}|)}
  272. \index{Stereographic projection \Opt{Js} \Opt{JS}|)}
  273. \index{\Opt{Js} \Opt{JS} (Stereographic)|)}
  274. \subsection{Perspective projection (\Opt{Jg} \Opt{JG})}
  275. \index{Projection!azimuthal!perspective \Opt{Jg} \Opt{JG}|(}
  276. \index{Perspective projection \Opt{Jg} \Opt{JG}|(}
  277. \index{\Opt{Jg} \Opt{JG} (Perspective)|(}
  278. The perspective projection imitates in 2 dimensions the 3-dimensional view of the
  279. earth from space. The implementation in \GMT\ is very flexible, and thus requires
  280. many input variables. Those are listed and explained below, with the values used in
  281. Figure~\ref{fig:GMT_perspective} between brackets.
  282. \begin{itemize}
  283. \item Longitude and latitude of the projection center (4\DS E/52\DS N).
  284. \item Altitude of the viewer above sea level in kilometers (230 km). If this value is less than
  285. 10, it is assumed to be the distance of the viewer from the center of the earth in earth radii.
  286. If an ``r'' is appended, it is the distance from the center of the earth in kilometers.
  287. \item Azimuth in degrees (90\DS, due east). This is the direction in which you are looking, measured
  288. clockwise from north.
  289. \item Tilt in degrees (60\DS). This is the viewing angle relative to zenith. So a tilt of 0\DS\ is
  290. looking straight down, 60\DS\ is looking from 30\DS\ above the horizon.
  291. \item Twist in degrees (180\DS). This is the boresight rotation (clockwise) of the image. The twist
  292. of 180\DS\ in the example mimics the fact that the Space Shuttle flies upside down.
  293. \item Width and height of the viewpoint in degrees (60\DS). This number depends on whether you are
  294. looking with the naked eye (in which case you view is about 60\DS\ wide), or with binoculars, for
  295. example.
  296. \item Scale as 1:xxxxx or as radius/latitude where
  297. radius is distance on map in inches from projection center to
  298. a particular [possibly oblique] latitude (\Opt{Jg}), or map
  299. width (\Opt{JG}) (5 inches).
  300. \end{itemize}
  301. The imagined view of northwest Europe from a Space Shuttle at 230 km looking due east is thus
  302. accomplished by the following \GMTprog{pscoast} command:
  303. \script{GMT_perspective}
  304. \GMTfig[h]{GMT_perspective}{View from the Space Shuttle in Perspective projection.}
  305. \index{Projection!azimuthal!perspective \Opt{Jg} \Opt{JG}|)}
  306. \index{Perspective projection \Opt{Jg} \Opt{JG}|)}
  307. \index{\Opt{Jg} \Opt{JG} (Perspective)|)}
  308. \subsection{Orthographic projection (\Opt{Jg} \Opt{JG})}
  309. \index{Projection!azimuthal!orthographic \Opt{Jg} \Opt{JG}|(}
  310. \index{Orthographic projection \Opt{Jg} \Opt{JG}|(}
  311. \index{\Opt{Jg} \Opt{JG} (Orthographic)|(}
  312. The orthographic azimuthal projection is a perspective projection
  313. from infinite distance. It is therefore often used to give the
  314. appearance of a globe viewed from outer space. As with Lambert's
  315. equal-area and the stereographic projection, only one hemisphere
  316. can be viewed at any time. The projection is neither equal-area
  317. nor conformal, and much distortion is introduced near the edge
  318. of the hemisphere. The directions from the center of projection
  319. are true. The projection was known to the Egyptians and Greeks
  320. more than 2,000 years ago. Because it is mainly used for
  321. pictorial views at a small scale, only the spherical form is necessary.
  322. To specify the orthographic projection the same options \Opt{Jg} or \Opt{JG} as the perspective
  323. projection are used, but with fewer variables to supply:
  324. \begin{itemize}
  325. \item Longitude and latitude of the projection center.
  326. \item Optionally, the horizon, i.e., the number of degrees from the center to the edge ($\le$90\DS, default is 90\DS).
  327. \item Scale as 1:xxxxx or as radius/latitude where
  328. radius is distance on map in inches from projection center to
  329. a particular [possibly oblique] latitude (\Opt{Jg}), or map
  330. width (\Opt{JG}).
  331. \end{itemize}
  332. Our example of a perspective view centered on 75\DS W/40\DS N
  333. can therefore be generated by the following \GMTprog{pscoast} command:
  334. \script{GMT_orthographic}
  335. \GMTfig[h]{GMT_orthographic}{Hemisphere map using the Orthographic projection.}
  336. \index{Projection!azimuthal!orthographic \Opt{Jg} \Opt{JG}|)}
  337. \index{Orthographic projection \Opt{Jg} \Opt{JG}|)}
  338. \index{\Opt{Jg} \Opt{JG} (Orthographic)|)}
  339. \subsection {Azimuthal Equidistant projection (\Opt{Je} \Opt{JE})}
  340. \index{Projection!azimuthal!equidistant \Opt{Je} \Opt{JE}|(}
  341. \index{Azimuthal equidistant projection \Opt{Je} \Opt{JE}|(}
  342. \index{\Opt{Je} \Opt{JE} (Azimuthal equidistant)|(}
  343. The most noticeable feature of this azimuthal projection is the
  344. fact that distances measured from the center are true. Therefore,
  345. a circle about the projection center defines the locus of points
  346. that are equally far away from the plot origin. Furthermore,
  347. directions from the center are also true. The projection, in
  348. the polar aspect, is at least several centuries old. It is a
  349. useful projection for a global view of locations at various or
  350. identical distance from a given point (the map center).
  351. To specify the azimuthal equidistant projection you must supply:
  352. \begin{itemize}
  353. \item Longitude and latitude of the projection center.
  354. \item Optionally, the horizon, i.e., the number of degrees from the center to the edge ($\le$180\DS, default is 180\DS).
  355. \item Scale as 1:xxxxx or as radius/latitude where
  356. radius is distance on map in inches from projection center to
  357. a particular [possibly oblique] latitude (\Opt{Je}), or map
  358. width (\Opt{JE}).
  359. \end{itemize}
  360. Our example of a global view centered on 100\DS W/40\DS N
  361. can therefore be generated by the following \GMTprog{pscoast}
  362. command. Note that the antipodal point is 180\DS\ away from
  363. the center, but in this projection this point plots as the
  364. entire map perimeter:
  365. \script{GMT_az_equidistant}
  366. \GMTfig[h]{GMT_az_equidistant}{World map using the equidistant azimuthal projection.}
  367. \index{Projection!azimuthal!equidistant \Opt{Je} \Opt{JE}|)}
  368. \index{Azimuthal equidistant projection \Opt{Je} \Opt{JE}|)}
  369. \index{\Opt{Je} \Opt{JE} (Azimuthal equidistant)|)}
  370. \subsection{Gnomonic projection (\Opt{Jf} \Opt{JF})}
  371. \index{Projection!azimuthal!gnomonic \Opt{Jf} \Opt{JF}|(}
  372. \index{Gnomonic projection \Opt{Jf} \Opt{JF}|(}
  373. \index{\Opt{Jf} \Opt{JF} (Gnomonic)|(}
  374. The Gnomonic azimuthal projection is a perspective projection
  375. from the center onto a plane tangent to the surface. Its origin
  376. goes back to the old Greeks who used it for star maps almost 2500
  377. years ago. The projection is neither equal-area nor conformal,
  378. and much distortion is introduced near the edge of the hemisphere;
  379. in fact, less than a hemisphere may be shown around a given center.
  380. The directions from the center of projection are true. Great circles
  381. project onto straight lines. Because it is mainly used for pictorial
  382. views at a small scale, only the spherical form is necessary.
  383. To specify the Gnomonic projection you must supply:
  384. \begin{itemize}
  385. \item Longitude and latitude of the projection center.
  386. \item Optionally, the horizon, i.e., the number of degrees from the center to the edge ($<$90\DS, default is 60\DS).
  387. \item Scale as 1:xxxxx or as radius/latitude where
  388. radius is distance on map in inches from projection center to
  389. a particular [possibly oblique] latitude (\Opt{Jf}), or map
  390. width (\Opt{JF}).
  391. \end{itemize}
  392. Using a horizon of 60\DS , our example of this projection
  393. centered on 120\DS W/35\DS N can therefore be generated by
  394. the following \GMTprog{pscoast} command:
  395. \script{GMT_gnomonic}
  396. \GMTfig[h]{GMT_gnomonic}{Gnomonic azimuthal projection.}
  397. \index{Projection!azimuthal!gnomonic \Opt{Jf} \Opt{JF}|)}
  398. \index{Gnomonic projection \Opt{Jf} \Opt{JF}|)}
  399. \index{\Opt{Jf} \Opt{JF} (Gnomonic)|)}
  400. \index{Azimuthal projections|)}
  401. \index{Projection!azimuthal|)}
  402. \clearpage
  403. \section{Cylindrical projections}
  404. \index{Cylindrical projections|(}
  405. \index{Projection!cylindrical|(}
  406. Cylindrical projections are easily recognized for its shape: maps are rectangular and meridians and parallels are straight lines crossing at right angles. But that is where similarities between the cylindrical projections supported by \GMT\ (Mercator, transverse Mercator, universal transverse Mercator, oblique Mercator, Cassini, cylindrical equidistant, cylindrical equal-area, Miller, and cylindrical stereographic projections) stops. Each have a different way of spacing the meridians and parallels to obtain certain desirable cartographic properties.
  407. \subsection{Mercator projection (\Opt{Jm} \Opt{JM})}
  408. \index{Projection!cylindrical!Mercator \Opt{Jm} \Opt{JM}|(}
  409. \index{Mercator projection \Opt{Jm} \Opt{JM}|(}
  410. \index{\Opt{Jm} \Opt{JM} (Mercator)|(}
  411. Probably the most famous of the various map projections,
  412. the Mercator projection takes its name from the Flemish cartographer Gheert Cremer, better known as Gerardus Mercator, who presented it in 1569.
  413. The projection is a cylindrical and conformal, with no distortion along the equator. A major
  414. navigational feature of the projection is that a line of
  415. constant azimuth is straight. Such a line is called a
  416. rhumb line or \emph{loxodrome}\index{Loxodrome}. Thus, to sail from one
  417. point to another one only had to connect the points with
  418. a straight line, determine the azimuth of the line, and
  419. keep this constant course for the entire voyage\footnote{This
  420. is, however, not the shortest distance. It is given
  421. by the great circle connecting the two points.}\index{Great circle}. The
  422. Mercator projection has been used extensively for world
  423. maps in which the distortion towards the polar regions
  424. grows rather large, thus incorrectly giving the impression
  425. that, for example, Greenland is larger than South America.
  426. In reality, the latter is about eight times the size of
  427. Greenland. Also, the Former Soviet Union looks much bigger
  428. than Africa or South America. One may wonder whether this
  429. illusion has had any influence on U.S.\ foreign policy.
  430. In the regular Mercator projection, the cylinder touches
  431. the globe along the equator. Other orientations like
  432. vertical and oblique give rise to the Transverse and
  433. Oblique Mercator projections, respectively. We will
  434. discuss these generalizations following the regular
  435. Mercator projection.
  436. The regular Mercator projection requires a minimum of
  437. parameters. To use it in \GMT\ programs you supply this
  438. information (the first two items are optional and have defaults):
  439. \begin{itemize}
  440. \item Central meridian [Middle of your map].
  441. \item Standard parallel for true scale [Equator]. When supplied, central meridian must be supplied as well.
  442. \item Scale along the equator in inch/degree or
  443. 1:xxxxx (\Opt{Jm}), or map width (\Opt{JM}).
  444. \end{itemize}
  445. Our example presents a world map at a scale of 0.012
  446. inch pr degree which will give a map 4.32 inch wide.
  447. It was created with the command:
  448. \script{GMT_mercator}
  449. \GMTfig[H]{GMT_mercator}{Simple Mercator map.}
  450. While this example is centered on the Dateline, one can
  451. easily choose another configuration with the \Opt{R} option.
  452. A map centered on Greenwich would specify the region with
  453. \textbf{-R}-180/180/-70/70.
  454. \index{Projection!cylindrical!Mercator \Opt{Jm} \Opt{JM}|)}
  455. \index{Mercator projection \Opt{Jm} \Opt{JM}|)}
  456. \index{\Opt{Jm} \Opt{JM} (Mercator)|)}
  457. \subsection{Transverse Mercator projection (\Opt{Jt} \Opt{JT})}
  458. \index{Projection!cylindrical!transverse Mercator \Opt{Jt} \Opt{JT}|(}
  459. \index{Transverse Mercator projection \Opt{Jt} \Opt{JT}|(}
  460. \index{\Opt{Jt} \Opt{JT} (Transverse Mercator)|(}
  461. The transverse Mercator was invented by Lambert in 1772.
  462. In this projection the cylinder touches a meridian along
  463. which there is no distortion. The distortion increases away
  464. from the central meridian and goes to infinity at 90\DS\ from
  465. center. The central meridian, each meridian 90\DS\ away
  466. from the center, and equator are straight lines; other parallels
  467. and meridians are complex curves. The projection is defined
  468. by specifying:
  469. \begin{itemize}
  470. \item The central meridian.
  471. \item Optionally, the latitude of origin (default is the equator).
  472. \item Scale along the equator in inch/degree or 1:xxxxx (\Opt{Jt}), or map width (\Opt{JT}).
  473. \end{itemize}
  474. The optional latitude of origin defaults to Equator if not specified.
  475. Although defaulting to 1, you can change the map scale factor via
  476. the \textbf{PROJ\_SCALE\_FACTOR} parameter.
  477. Our example shows a transverse Mercator map of south-east
  478. Europe and the Middle East with 35\DS E as the central
  479. meridian:
  480. \script{GMT_transverse_merc}
  481. \GMTfig[H]{GMT_transverse_merc}{Rectangular Transverse Mercator map.}
  482. The transverse Mercator can also be used to generate a global map---the
  483. equivalent of the 360\DS\ Mercator map. Using the command
  484. \script{GMT_TM}
  485. \noindent
  486. we made the map illustrated in Figure~\ref{fig:GMT_TM}. Note that
  487. when a world map is given (indicated by \Opt{R}\emph{0/360/s/n}), the arguments
  488. are interpreted to mean oblique degrees, i.e., the 360\DS\ range is
  489. understood to mean the extent of the plot along the central meridian,
  490. while the ``south'' and ``north'' values represent how far from the
  491. central longitude we want the plot to extend. These values correspond
  492. to latitudes in the regular Mercator projection and must therefore be
  493. less than 90\DS.
  494. \GMTfig[H]{GMT_TM}{A global transverse Mercator map.}
  495. \index{Projection!cylindrical!transverse Mercator \Opt{Jt} \Opt{JT}|)}
  496. \index{Transverse Mercator projection \Opt{Jt} \Opt{JT}|)}
  497. \index{\Opt{Jt} \Opt{JT} (Transverse Mercator)|)}
  498. \subsection{Universal Transverse Mercator (UTM) projection (\Opt{Ju} \Opt{JU})}
  499. \index{Projection!cylindrical!UTM \Opt{Ju} \Opt{JU}|(}
  500. \index{UTM projection \Opt{Ju} \Opt{JU}|(}
  501. \index{\Opt{Ju} \Opt{JU} (UTM)|(}
  502. A particular subset of the transverse Mercator is the
  503. Universal Transverse Mercator (UTM) which was adopted
  504. by the US Army for large-scale military maps. Here, the
  505. globe is divided into 60 zones between 84\DS S and
  506. 84\DS N, most of which are 6\DS\ wide. Each of
  507. these UTM zones have their unique central meridian.
  508. Furthermore, each zone is divided into latitude bands
  509. but these are not needed to specify the projection for
  510. most cases. See Figure~\ref{fig:GMT_utm_zones} for all
  511. zone designations.
  512. \begin{figure}[htb]
  513. \includegraphics[width=\textwidth]{GMT_utm_zones}
  514. \caption{Universal Transverse Mercator zone layout.}
  515. \label{fig:GMT_utm_zones}
  516. \end{figure}
  517. \GMT\ implements both the transverse Mercator and the
  518. UTM projection. When selecting UTM you must specify:
  519. \begin{itemize}
  520. \item UTM zone (A, B, 1--60, Y, Z). Use negative values for numerical zones in the southern hemisphere
  521. or append the latitude modifiers C--H, J--N, P--X) to specify an exact UTM grid zone.
  522. \item Scale along the equator in inch/degree or 1:xxxxx (\Opt{Ju}), or map width (\Opt{JU}).
  523. \end{itemize}
  524. In order to minimize the distortion in any given zone,
  525. a scale factor of 0.9996 has been factored into the formulae.
  526. (although a standard, you can change this with \textbf{PROJ\_SCALE\_FACTOR}).
  527. This makes the UTM projection a \emph{secant} projection and not
  528. a \emph{tangent} projection like the transverse Mercator above.
  529. The scale only varies by 1 part in 1,000 from true scale at
  530. equator. The ellipsoidal projection expressions are accurate for map areas
  531. that extend less than 10\DS\ away from the central meridian. For
  532. larger regions we use the conformal latitude in the general spherical
  533. formulae instead.
  534. \index{Projection!cylindrical!UTM \Opt{Ju} \Opt{JU}|)}
  535. \index{UTM projection \Opt{Ju} \Opt{JU}|)}
  536. \index{\Opt{Ju} \Opt{JU} (UTM)|)}
  537. \subsection{Oblique Mercator projection (\Opt{Jo} \Opt{JO})}
  538. \index{Projection!cylindrical!oblique Mercator \Opt{Jo} \Opt{JO}|(}
  539. \index{Oblique Mercator projection \Opt{Jo} \Opt{JO}|(}
  540. \index{\Opt{Jo} \Opt{JO} (Oblique Mercator)|(}
  541. Oblique configurations of the cylinder give rise to the
  542. oblique Mercator projection. It is particularly useful when
  543. mapping regions of large lateral extent in an oblique direction.
  544. Both parallels and meridians are complex curves. The projection
  545. was developed in the early 1900s by several workers. Several
  546. parameters must be provided to define the projection.
  547. \GMT\ offers three different definitions:
  548. \begin{enumerate}
  549. \item Option \Opt{Joa} or \Opt{JOa}:
  550. \begin{itemize}
  551. \item Longitude and latitude of projection center.
  552. \item Azimuth of the oblique equator.
  553. \item Scale in inch/degree or 1:xxxxx along oblique equator (\Opt{Joa}), or map width (\Opt{JOa}).
  554. \end{itemize}
  555. \item Option \Opt{Job} or \Opt{JOb}:
  556. \begin{itemize}
  557. \item Longitude and latitude of projection center.
  558. \item Longitude and latitude of second point on oblique equator.
  559. \item Scale in inch/degree or 1:xxxxx along oblique equator (\Opt{Job}), or map width (\Opt{JOb}).
  560. \end{itemize}
  561. \item Option \Opt{Joc} or \Opt{JOc}:
  562. \begin{itemize}
  563. \item Longitude and latitude of projection center.
  564. \item Longitude and latitude of projection pole.
  565. \item Scale in inch/degree or 1:xxxxx along oblique equator (\Opt{Joc}), or map width (\Opt{JOc}).
  566. \end{itemize}
  567. \end{enumerate}
  568. Our example was produced by the command
  569. \script{GMT_obl_merc}
  570. \GMTfig[H]{GMT_obl_merc}{Oblique Mercator map using \Opt{Joc}. We
  571. make it clear which direction is North by adding a star rose with the \Opt{T} option.}
  572. It uses definition 3 for an oblique view of some Caribbean islands.
  573. Note that we define our region using the rectangular system
  574. described earlier. If we do not append an ``r'' to the \Opt{R}
  575. string then the information provided with the \Opt{R} option is
  576. assumed to be oblique degrees about the projection center rather
  577. than the usual geographic coordinates. This interpretation is
  578. chosen since in general the parallels and meridians are not very
  579. suitable as map boundaries.
  580. \index{Projection!cylindrical!oblique Mercator \Opt{Jo} \Opt{JO}|)}
  581. \index{Oblique Mercator projection \Opt{Jo} \Opt{JO}|)}
  582. \index{\Opt{Jo} \Opt{JO} (Oblique Mercator)|)}
  583. \subsection{Cassini cylindrical projection (\Opt{Jc} \Opt{JC})}
  584. \index{Projection!cylindrical!Cassini \Opt{Jc} \Opt{JC}|(}
  585. \index{Cassini projection \Opt{Jc} \Opt{JC}|(}
  586. \index{\Opt{Jc} \Opt{JC} (Cassini)|(}
  587. This cylindrical projection was developed in 1745 by C\'{e}sar-Fran\c{c}ois
  588. Cassini de Thury for the survey of France. It is occasionally called
  589. Cassini-Soldner since the latter provided the more accurate
  590. mathematical analysis that led to the development of the
  591. ellipsoidal formulae. The projection is neither conformal
  592. nor equal-area, and behaves as a compromise between the two
  593. end-members. The distortion is zero along the central meridian.
  594. It is best suited for mapping regions of north-south extent.
  595. The central meridian, each meridian 90\DS\ away, and equator
  596. are straight lines; all other meridians and parallels are
  597. complex curves. The requirements to define this projection are:
  598. \begin{itemize}
  599. \item Longitude and latitude of central point.
  600. \item Scale in inch/degree or as 1:xxxxx (\Opt{Jc}), or map width (\Opt{JC}).
  601. \end{itemize}
  602. A detailed map of the island of Sardinia centered on the
  603. 8\DS 45'E meridian using the Cassini projection can be
  604. obtained by running the command:
  605. \script{GMT_cassini}
  606. \GMTfig[H]{GMT_cassini}{Cassini map over Sardinia.}
  607. As with the previous projections, the user can choose between
  608. a rectangular boundary (used here) or a geographical (WESN)
  609. boundary.
  610. \index{Projection!cylindrical!Cassini \Opt{Jc} \Opt{JC}|)}
  611. \index{Cassini projection \Opt{Jc} \Opt{JC}|)}
  612. \index{\Opt{Jc} \Opt{JC} (Cassini)|)}
  613. \subsection{Cylindrical equidistant projection (\Opt{Jq} \Opt{JQ})}
  614. \index{Projection!cylindrical!equidistant \Opt{Jq} \Opt{JQ}|(}
  615. \index{Equidistant cylindrical projection \Opt{Jq} \Opt{JQ}|(}
  616. \index{\Opt{Jq} \Opt{JQ} (Cylindrical equidistant)|(}
  617. This simple cylindrical projection is really a linear scaling
  618. of longitudes and latitudes.
  619. The most common form is the Plate Carr\'{e}e projection, where the scaling of longitudes and latitudes is the same.\index{Plate Carr\'{e}e projection}
  620. All meridians and parallels are straight lines. The projection can be defined by:
  621. \begin{itemize}
  622. \item The central meridian [Middle of your map].
  623. \item Standard parallel [Equator].
  624. \item Scale in inch/degree or as 1:xxxxx (\Opt{Jq}), or map width (\Opt{JQ}).
  625. \end{itemize}
  626. The first two of these are optional and have defaults. When the standard parallel is defined, the central meridian must be supplied as well.
  627. A world map centered on the dateline using this projection
  628. can be obtained by running the command:
  629. \script{GMT_equi_cyl}
  630. \GMTfig[H]{GMT_equi_cyl}{World map using the Plate Carr\'{e}e projection.}
  631. Different relative scalings of longitudes and latitudes can be obtained by selecting a standard parallel different from the equator. Some selections for standard parallels have practical properties as shown in Table~\ref{tbl:JQ}.
  632. \begin{table}[h]
  633. \index{Grafarend and Niermann projection}
  634. \index{Ronald Miller Equidistant projection}
  635. \index{Plate Carr\'ee projection}
  636. \centering
  637. \begin{tabular}{lc} \hline
  638. \multicolumn{1}{c}{\emph{Projection}} &
  639. \multicolumn{1}{c}{\emph{Standard parallel}} \\ \hline
  640. Grafarend and Niermann, minimum linear distortion & 61.7\DS\\
  641. Ronald Miller Equirectangular & 50.5\DS\\
  642. Ronald Miller, minimum continental distortion & 43.5\DS\\
  643. Grafarend and Niermann & 42\DS\\
  644. Ronald Miller, minimum overall distortion & 37.5\DS\\
  645. Plate Carr\'{e}e, Simple Cylindrical, Plain/Plane & 0\DS\\\hline
  646. \end{tabular}
  647. \caption{Standard parallels for some cylindrical equidistant projections.}
  648. \label{tbl:JQ}
  649. \end{table}
  650. \index{Projection!cylindrical!equidistant \Opt{Jq} \Opt{JQ}|)}
  651. \index{Equidistant cylindrical projection \Opt{Jq} \Opt{JQ}|)}
  652. \index{\Opt{Jq} \Opt{JQ} (Cylindrical equidistant)|)}
  653. \subsection{Cylindrical equal-area projections (\Opt{Jy} \Opt{JY})}
  654. \index{Projection!cylindrical!equal-area \Opt{Jy} \Opt{JY}|(}
  655. \index{Cylindrical equal-area projection \Opt{Jy} \Opt{JY}|(}
  656. \index{\Opt{Jy} \Opt{JY} (Cylindrical equal-area)|(}
  657. This cylindrical projection is actually several projections,
  658. depending on what latitude is selected as the standard parallel.
  659. However, they are all equal area and hence non-conformal. All
  660. meridians and parallels are straight lines. The requirements
  661. to define this projection are:
  662. \begin{itemize}
  663. \item The central meridian.
  664. \item The standard parallel.
  665. \item Scale in inch/degree or as 1:xxxxx (\Opt{Jy}), or map width (\Opt{JY})
  666. \end{itemize}
  667. While you may choose any value for the standard parallel and
  668. obtain your own personal projection, there are seven choices of
  669. standard parallels that result in known (or named) projections.
  670. These are listed in Table~\ref{tbl:JY}.
  671. \begin{table}[h]
  672. \index{Lambert cylindrical projection}
  673. \index{Behrman projection}
  674. \index{Caster projection}
  675. \index{Trystan Edwards projection}
  676. \index{Hobo-Dyer projection}
  677. \index{Gall projection}
  678. \index{Peters projection}
  679. \index{Balthasart projection}
  680. \centering
  681. \begin{tabular}{lc} \hline
  682. \multicolumn{1}{c}{\emph{Projection}} &
  683. \multicolumn{1}{c}{\emph{Standard parallel}} \\ \hline
  684. Balthasart & 50\DS \\
  685. Gall-Peters & 45\DS \\
  686. Hobo-Dyer & 37\DS30' (= 37.5\DS) \\
  687. Trystan Edwards & 37\DS24' (= 37.4\DS) \\
  688. Caster & 37\DS04' (= 37.0666\DS) \\
  689. Behrman & 30\DS \\
  690. Lambert & 0\DS \\\hline
  691. \end{tabular}
  692. \caption{Standard parallels for some cylindrical equal-area projections.}
  693. \label{tbl:JY}
  694. \end{table}
  695. For instance, a world map centered on the 35\DS E meridian
  696. using the Behrman projection (Figure~\ref{fig:GMT_general_cyl})
  697. can be obtained by running the command:
  698. \script{GMT_general_cyl}
  699. \GMTfig[H]{GMT_general_cyl}{World map using the Behrman cylindrical equal-area projection.}
  700. As one can see there is considerable distortion at high latitudes
  701. since the poles map into lines.
  702. \index{Projection!cylindrical!equal-area \Opt{Jy} \Opt{JY}|)}
  703. \index{Cylindrical equal-area projection \Opt{Jy} \Opt{JY}|)}
  704. \index{\Opt{Jy} \Opt{JY} (Cylindrical equal-area)|)}
  705. \subsection{Miller Cylindrical projection (\Opt{Jj} \Opt{JJ})}
  706. \index{Projection!cylindrical!Miller \Opt{Jj} \Opt{JJ}|(}
  707. \index{Miller cylindrical projection \Opt{Jj} \Opt{JJ}|(}
  708. \index{\Opt{Jj} \Opt{JJ} (Miller)|(}
  709. This cylindrical projection, presented by Osborn Maitland Miller of the
  710. American Geographic Society in 1942, is neither equal nor conformal.
  711. All meridians and parallels are straight lines. The projection was
  712. designed to be a compromise between Mercator and other cylindrical
  713. projections. Specifically, Miller spaced the parallels by using
  714. Mercator's formula with 0.8 times the actual latitude, thus avoiding
  715. the singular poles; the result was then divided by 0.8. There is
  716. only a spherical form for this projection. Specify the projection by:
  717. \begin{itemize}
  718. \item Optionally, the central meridian (default is the middle of your map).
  719. \item Scale in inch/degree or as 1:xxxxx (\Opt{Jj}), or map width (\Opt{JJ}).
  720. \end{itemize}
  721. For instance, a world map centered on the 90\DS E meridian
  722. at a map scale of 1:400,000,000 (Figure~\ref{fig:GMT_miller}) can be obtained as follows:
  723. \script{GMT_miller}
  724. \GMTfig[b]{GMT_miller}{World map using the Miller cylindrical projection.}
  725. \index{Projection!cylindrical!Miller \Opt{Jj} \Opt{JJ}|)}
  726. \index{Miller cylindrical projection \Opt{Jj} \Opt{JJ}|)}
  727. \index{\Opt{Jj} \Opt{JJ} (Miller)|)}
  728. \subsection{Cylindrical stereographic projections (\Opt{Jcyl\_stere} \Opt{JCyl\_stere})}
  729. \index{Projection!cylindrical!stereographic \Opt{Jcyl\_stere} \Opt{JCyl\_stere}|(}
  730. \index{Cylindrical stereographic projection \Opt{Jcyl\_stere} \Opt{JCyl\_stere}|(}
  731. \index{\Opt{Jcyl\_stere} \Opt{JCyl\_stere} (Cylindrical stereographic)|(}
  732. The cylindrical stereographic projections are certainly not as notable as other cylindrical projections, but are still used because of their relative simplicity and their ability to overcome some of the downsides of other cylindrical projections, like extreme distortions of the higher latitudes. The stereographic projections are perspective projections, projecting the sphere onto a cylinder in the direction of the antipodal point on the equator. The cylinder crosses the sphere at two standard parallels, equidistant from the equator.
  733. The projections are defined by:
  734. \begin{itemize}
  735. \item The central meridian (uses the middle of the map when omitted).
  736. \item The standard parallel (default is the Equator). When used, central meridian needs to be given as well.
  737. \item Scale in inch/degree or as 1:xxxxx (\Opt{Jcyl\_stere}), or map width (\Opt{JCyl\_stere})
  738. \end{itemize}
  739. Some of the selections of the standard parallel are named for the cartographer or publication that popularized the projection (Table~\ref{tbl:JCylstere}).
  740. \begin{table}[h]
  741. \index{Miller's modified Gall projection}
  742. \index{Kamenetskiy's First projection}
  743. \index{Gall's stereographic projection}
  744. \index{Bolshoi Sovietskii Atlas Mira or Kamenetskiy's Second projection}
  745. \index{Braun's cylindrical projection}
  746. \centering
  747. \begin{tabular}{lc} \hline
  748. \multicolumn{1}{c}{\emph{Projection}} &
  749. \multicolumn{1}{c}{\emph{Standard parallel}} \\ \hline
  750. Miller's modified Gall & 66.159467\DS\\
  751. Kamenetskiy's First & 55\DS\\
  752. Gall's stereographic & 45\DS\\
  753. Bolshoi Sovietskii Atlas Mira or Kamenetskiy's Second & 30\DS\\
  754. Braun's cylindrical & 0\DS\\\hline
  755. \end{tabular}
  756. \caption{Standard parallels for some cylindrical equal-area projections.}
  757. \label{tbl:JCylstere}
  758. \end{table}
  759. A map of the world, centered on the Greenwich meridian, using the Gall's stereographic projection (standard parallel is 45\DS, Figure~\ref{fig:GMT_gall_stereo}), is obtained as follows:
  760. \script{GMT_gall_stereo}
  761. \GMTfig[H]{GMT_gall_stereo}{World map using Gall's stereographic projection.}
  762. \index{Projection!cylindrical!stereographic \Opt{Jcyl\_stere} \Opt{JCyl\_stere}|)}
  763. \index{Cylindrical stereographic projection \Opt{Jcyl\_stere} \Opt{JCyl\_stere}|)}
  764. \index{\Opt{Jcyl\_stere} \Opt{JCyl\_stere} (Cylindrical stereographic)|)}
  765. \index{Cylindrical projections|)}
  766. \index{Projection!cylindrical|)}
  767. \clearpage
  768. \section{Miscellaneous projections}
  769. \index{Miscellaneous projections|(}
  770. \index{Projection!miscellaneous|(}
  771. \GMT\ supports 8 common projections for global presentation
  772. of data or models. These are the Hammer, Mollweide, Winkel
  773. Tripel, Robinson, Eckert IV and VI, Sinusoidal, and Van der
  774. Grinten projections.
  775. Due to the small scale used for global maps these projections
  776. all use the spherical approximation rather than more
  777. elaborate elliptical formulae.
  778. In all cases, the specification of the central meridian can be skipped.
  779. The default is the middle of the longitude range of the plot, specified by the \Opt(R) option.
  780. \subsection{Hammer projection (\Opt{Jh} \Opt{JH})}
  781. \index{Hammer projection \Opt{Jh} \Opt{JH}|(}
  782. \index{Projection!miscellaneous!Hammer \Opt{Jh} \Opt{JH}|(}
  783. \index{\Opt{Jh} \Opt{JH} (Hammer)|(}
  784. The equal-area Hammer projection, first presented by the German mathematician
  785. Ernst von Hammer in 1892, is also known as Hammer-Aitoff
  786. (the Aitoff projection looks similar, but is not equal-area).
  787. The border is an ellipse, equator and central meridian are
  788. straight lines, while other parallels and meridians are
  789. complex curves. The projection is defined by selecting:
  790. \begin{itemize}
  791. \item The central meridian [Middle of your map].
  792. \item Scale along equator in inch/degree or 1:xxxxx (\Opt{Jh}), or map width (\Opt{JH}).
  793. \end{itemize}
  794. A view of the Pacific ocean using the Dateline as central
  795. meridian is accomplished thus
  796. \script{GMT_hammer}
  797. \GMTfig[H]{GMT_hammer}{World map using the Hammer projection.}
  798. \index{Hammer projection \Opt{Jh} \Opt{JH}|)}
  799. \index{Projection!miscellaneous!Hammer \Opt{Jh} \Opt{JH}|)}
  800. \index{\Opt{Jh} \Opt{JH} (Hammer)|)}
  801. \subsection{Mollweide projection (\Opt{Jw} \Opt{JW})}
  802. \index{Mollweide projection \Opt{Jw} \Opt{JW}|(}
  803. \index{Projection!miscellaneous!Mollweide \Opt{Jw} \Opt{JW}|(}
  804. \index{\Opt{Jw} \Opt{JW} (Mollweide)|(}
  805. This pseudo-cylindrical, equal-area projection was developed
  806. by the German mathematician and astronomer Karl Brandan Mollweide in 1805.
  807. Parallels are unequally spaced straight
  808. lines with the meridians being equally spaced elliptical arcs.
  809. The scale is only true along latitudes 40\DS44' north and south.
  810. The projection is used mainly for global maps showing data
  811. distributions. It is occasionally referenced under the name
  812. homalographic projection. Like the Hammer projection,
  813. outlined above, we need to specify only two parameters to
  814. completely define the mapping of longitudes and latitudes
  815. into rectangular \emph{x}/\emph{y} coordinates:
  816. \begin{itemize}
  817. \item The central meridian [Middle of your map].
  818. \item Scale along equator in inch/degree or 1:xxxxx (\Opt{Jw}), or map width (\Opt{JW}).
  819. \end{itemize}
  820. An example centered on Greenwich can be generated thus:
  821. \clearpage
  822. \script{GMT_mollweide}
  823. \GMTfig[H]{GMT_mollweide}{World map using the Mollweide projection.}
  824. \index{Mollweide projection \Opt{Jw} \Opt{JW}|)}
  825. \index{Projection!miscellaneous!Mollweide \Opt{Jw} \Opt{JW}|)}
  826. \index{\Opt{Jw} \Opt{JW} (Mollweide)|)}
  827. \subsection{Winkel Tripel projection (\Opt{Jr} \Opt{JR})}
  828. \index{Winkel Tripel projection \Opt{Jr} \Opt{JR}|(}
  829. \index{Projection!miscellaneous!Winkel Tripel \Opt{Jr} \Opt{JR}|(}
  830. \index{\Opt{Jr} \Opt{JR} (Winkel Tripel)|(}
  831. In 1921, the German mathematician Oswald Winkel a projection that was to strike a compromise between the properties of three elements (area, angle and distance). The German word ``tripel'' refers to this junction of where each of these elements are least distorted when plotting global maps. The projection was popularized when Bartholomew and Son started to use it in its world-renowned ``The Times Atlas of the World'' in the mid 20th century. In 1998, the National Geographic Society made the Winkel Tripel as its map projection of choice for global maps.
  832. Naturally, this projection is neither conformal, nor equal-area. Central meridian and equator are
  833. straight lines; other parallels and meridians are curved.
  834. The projection is obtained by averaging the coordinates of
  835. the Equidistant Cylindrical and Aitoff (not Hammer-Aitoff)
  836. projections. The poles map into straight lines 0.4 times
  837. the length of equator. To use it you must enter
  838. \begin{itemize}
  839. \item The central meridian [Middle of your map].
  840. \item Scale along equator in inch/degree or 1:xxxxx (\Opt{Jr}), or map width (\Opt{JR}).
  841. \end{itemize}
  842. Centered on Greenwich, the example in Figure~\ref{fig:GMT_winkel}
  843. was created by this command:
  844. \script{GMT_winkel}
  845. \GMTfig[H]{GMT_winkel}{World map using the Winkel Tripel projection.}
  846. \index{Winkel Tripel projection \Opt{Jr} \Opt{JR}|)}
  847. \index{Projection!miscellaneous!Winkel Tripel \Opt{Jr} \Opt{JR}|)}
  848. \index{\Opt{Jr} \Opt{JR} (Winkel Tripel)|)}
  849. \subsection{Robinson projection (\Opt{Jn} \Opt{JN})}
  850. \index{Robinson projection \Opt{Jn} \Opt{JN}|(}
  851. \index{Projection!miscellaneous!Robinson \Opt{Jn} \Opt{JN}|(}
  852. \index{\Opt{Jn} \Opt{JN} (Robinson)|(}
  853. The Robinson projection, presented by the American geographer and cartographer Arthur H. Robinson in
  854. 1963, is a modified cylindrical projection that is neither
  855. conformal nor equal-area. Central meridian and all parallels
  856. are straight lines; other meridians are curved. It uses
  857. lookup tables rather than analytic expressions to make the
  858. world map ``look'' right\footnote{Robinson provided a table of
  859. $y$-coordinates for latitudes every 5\DS . To project values
  860. for intermediate latitudes one must interpolate the table.
  861. Different interpolants may result in slightly different maps.
  862. \gmt\ uses the interpolant selected by the parameter \textbf{GMT\_INTERPOLANT}
  863. in the \filename{gmt.conf} file.}. The scale is true
  864. along latitudes \PM 38\DS. The projection was originally
  865. developed for use by Rand McNally and is currently used by
  866. the National Geographic Society. To use it you must enter
  867. \begin{itemize}
  868. \item The central meridian [Middle of your map].
  869. \item Scale along equator in inch/degree or 1:xxxxx (\Opt{Jn}), or map width (\Opt{JN}).
  870. \end{itemize}
  871. Again centered on Greenwich, the example below was created by this command:
  872. \script{GMT_robinson}
  873. \GMTfig[H]{GMT_robinson}{World map using the Robinson projection.}
  874. \index{Robinson projection \Opt{Jn} \Opt{JN}|)}
  875. \index{Projection!miscellaneous!Robinson \Opt{Jn} \Opt{JN}|)}
  876. \index{\Opt{Jn} \Opt{JN} (Robinson)|)}
  877. \subsection{Eckert IV and VI projection (\Opt{Jk} \Opt{JK})}
  878. \index{Eckert IV and VI projection \Opt{Jk} \Opt{JK}|(}
  879. \index{Projection!miscellaneous!Eckert IV and VI \Opt{Jk} \Opt{JK}|(}
  880. \index{\Opt{Jk} \Opt{JK} (Eckert IV and VI)|(}
  881. The Eckert IV and VI projections, presented by the German cartographer Max Eckert-Greiffendorff in 1906,
  882. are pseudocylindrical equal-area projections. Central meridian
  883. and all parallels are straight lines; other meridians are
  884. equally spaced elliptical arcs (IV) or sinusoids (VI). The scale is
  885. true along latitudes \PM 40\DS 30' (IV) and \PM 49\DS 16' (VI).
  886. Their main use is in thematic world maps. To select Eckert IV you must
  887. use \Opt{JKf} (\textbf{f} for ``four'') while Eckert VI is selected with
  888. \Opt{JKs} (\textbf{s} for ``six''). If no modifier is given it defaults to
  889. Eckert VI.
  890. In addition, you must enter
  891. \begin{itemize}
  892. \item The central meridian [Middle of your map].
  893. \item Scale along equator in inch/degree or 1:xxxxx (\Opt{Jk}), or map width (\Opt{JK}).
  894. \end{itemize}
  895. Centered on the Dateline, the Eckert IV example below was created by this command:
  896. \script{GMT_eckert4}
  897. \GMTfig[h]{GMT_eckert4}{World map using the Eckert IV projection.}
  898. The same script, with \textbf{s} instead of \textbf{f}, yields the Eckert VI map:
  899. \GMTfig[h]{GMT_eckert6}{World map using the Eckert VI projection.}
  900. \index{Eckert IV and VI projection \Opt{Jk} \Opt{JK}|)}
  901. \index{Projection!miscellaneous!Eckert IV and VI \Opt{Jk} \Opt{JK}|)}
  902. \index{\Opt{Jk} \Opt{JK} (Eckert IV and VI)|)}
  903. \subsection{Sinusoidal projection (\Opt{Ji} \Opt{JI})}
  904. \index{Sinusoidal projection \Opt{Ji} \Opt{JI}|(}
  905. \index{Projection!miscellaneous!Sinusoidal \Opt{Ji} \Opt{JI}|(}
  906. \index{\Opt{Ji} \Opt{JI} (Sinusoidal)|(}
  907. The sinusoidal projection is one of the oldest known
  908. projections, is equal-area, and has been used since the
  909. mid-16th century. It has also been called the
  910. ``Equal-area Mercator'' projection. The central meridian
  911. is a straight line; all other meridians are sinusoidal
  912. curves. Parallels are all equally spaced straight lines,
  913. with scale being true along all parallels (and central
  914. meridian). To use it, you need to select:
  915. \begin{itemize}
  916. \item The central meridian [Middle of your map].
  917. \item Scale along equator in inch/degree or 1:xxxxx (\Opt{Ji}), or map width (\Opt{JI}).
  918. \end{itemize}
  919. A simple world map using the sinusoidal projection is therefore obtained by
  920. \script{GMT_sinusoidal}
  921. \GMTfig[H]{GMT_sinusoidal}{World map using the Sinusoidal projection.}
  922. To reduce distortion of shape the interrupted sinusoidal
  923. projection was introduced in 1927. Here, three symmetrical
  924. segments are used to cover the entire world. Traditionally,
  925. the interruptions are at 160\DS W, 20\DS W, and 60\DS E.
  926. To make the interrupted map we must call \GMTprog{pscoast} for
  927. each segment and superpose the results. To produce an
  928. interrupted world map (with the traditional boundaries
  929. just mentioned) that is 5.04 inches wide we use the scale
  930. 5.04/360\DS\ = 0.014 and offset the subsequent plots
  931. horizontally by their widths (140\DS $\cdot$0.014 and 80\DS
  932. $\cdot$0.014):
  933. \index{Sinusoidal projection, interrupted}
  934. \script{GMT_sinus_int}
  935. \GMTfig[H]{GMT_sinus_int}{World map using the Interrupted Sinusoidal projection.}
  936. The usefulness of the interrupted sinusoidal projection is
  937. basically limited to display of global, discontinuous data
  938. distributions like hydrocarbon and mineral resources, etc.
  939. \index{Sinusoidal projection \Opt{Ji} \Opt{JI}|)}
  940. \index{Projection!miscellaneous!Sinusoidal \Opt{Ji} \Opt{JI}|)}
  941. \index{\Opt{Ji} \Opt{JI} (Sinusoidal)|)}
  942. \subsection{Van der Grinten projection (\Opt{Jv} \Opt{JV})}
  943. \index{Van der Grinten projection \Opt{Jv} \Opt{JV}|(}
  944. \index{Projection!miscellaneous!Van der Grinten \Opt{Jv} \Opt{JV}|(}
  945. \index{\Opt{Jv} \Opt{JV} (Van der Grinten)|(}
  946. The Van der Grinten projection, presented by Alphons J. van der Grinten in 1904,
  947. is neither equal-area nor conformal. Central meridian
  948. and Equator are straight lines; other meridians are
  949. arcs of circles. The scale is true along the Equator only.
  950. Its main use is to show the entire world enclosed in a circle.
  951. To use it you must enter
  952. \begin{itemize}
  953. \item The central meridian [Middle of your map].
  954. \item Scale along equator in inch/degree or 1:xxxxx (\Opt{Jv}), or map width (\Opt{JV}).
  955. \end{itemize}
  956. Centered on the Dateline, the example below was created by this command:
  957. \script{GMT_grinten}
  958. \GMTfig[h]{GMT_grinten}{World map using the Van der Grinten projection.}
  959. \index{Van der Grinten projection \Opt{Jv} \Opt{JV}|)}
  960. \index{Projection!miscellaneous!Van der Grinten \Opt{Jv} \Opt{JV}|)}
  961. \index{\Opt{Jv} \Opt{JV} (Van der Grinten)|)}
  962. \index{Miscellaneous projections|)}
  963. \index{Projection!miscellaneous|)}
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...