Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

train_nb_svm.py 7.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  1. # Baselines and Bigrams: Simple, Good Sentiment and Topic Classification
  2. # Sida Wang and Christopher Manning
  3. # https://nlp.stanford.edu/pubs/sidaw12_simple_sentiment.pdf
  4. import argparse
  5. import os
  6. import warnings
  7. import dagshub
  8. import numpy as np
  9. import optuna
  10. import pandas as pd
  11. from scipy import sparse
  12. from sklearn.base import BaseEstimator, ClassifierMixin, clone
  13. from sklearn.exceptions import ConvergenceWarning
  14. from sklearn.model_selection import KFold
  15. from sklearn.preprocessing import LabelBinarizer, normalize
  16. from sklearn.svm import LinearSVC
  17. from sklearn.utils.extmath import safe_sparse_dot
  18. from tokenizers import Tokenizer
  19. from common.tools import *
  20. warnings.filterwarnings("ignore", category=ConvergenceWarning)
  21. warnings.filterwarnings("ignore", category=UserWarning)
  22. parser = argparse.ArgumentParser()
  23. parser.add_argument("GRAPH_VER", help="version of the graph you want regex to label your CSV with", type=str)
  24. parser.add_argument("DATASET_PATH", help="path to your input CSV", type=str)
  25. args = parser.parse_args()
  26. GRAPH_VER = args.GRAPH_VER
  27. DATASET_PATH = args.DATASET_PATH
  28. TOKENIZER_PATH = "../models/bpe_tokenizer.json"
  29. MODEL_DIR = "../models/nbsvm_regex_graph_v{}.sav".format(GRAPH_VER)
  30. TFIDF_DIR = "../models/tfidf_nbsvm_graph_v{}.pickle".format(GRAPH_VER)
  31. TAGS_TO_PREDICT = get_graph_vertices(GRAPH_VER)
  32. EXPERIMENT_DATA_PATH = ".."
  33. CODE_COLUMN = "code_block"
  34. TARGET_COLUMN = "graph_vertex_id"
  35. RANDOM_STATE = 42
  36. N_TRIALS = 50
  37. MAX_ITER = 10000
  38. SEARCH_SPACE = {
  39. "tfidf_min_df": (1, 5),
  40. "tfidf_max_df": (0.8, 1.0),
  41. "nbsvc_alpha": (1e-3, 10),
  42. "nbsvc_binarize": (True,),
  43. "svm_c": (1e-1, 1e3),
  44. }
  45. class NBSVC(BaseEstimator, ClassifierMixin):
  46. def __init__(self, alpha, svm_params, binarize=False):
  47. """
  48. :param alpha: smoothing parameter for Naive Bayes
  49. """
  50. super(NBSVC, self).__init__()
  51. self.alpha = alpha
  52. self.svm_params = svm_params
  53. self.binarize = binarize
  54. def _compute_ratios(self, X, y):
  55. """
  56. Computes ratios as in Multinomial Naive Bayes
  57. """
  58. n_classes = self.label_encoder.classes_.shape[0]
  59. self.ratios_ = np.full((n_classes, X.shape[1]), self.alpha)
  60. self.ratios_ += safe_sparse_dot(y.T, X)
  61. normalize(self.ratios_, norm="l1", copy=False)
  62. self.ratios_ = np.log(self.ratios_) - np.log(1 - self.ratios_)
  63. self.ratios_ = sparse.csr_matrix(self.ratios_)
  64. def fit(self, X, y=None):
  65. if self.binarize:
  66. X = (X > 0).astype(np.float)
  67. self.label_encoder = LabelBinarizer()
  68. y = self.label_encoder.fit_transform(y)
  69. self._compute_ratios(X, y)
  70. self.clfs_ = []
  71. for i in range(len(self.label_encoder.classes_)):
  72. X_i = X.multiply(self.ratios_[i])
  73. clf = LinearSVC(**self.svm_params).fit(X_i, y[:, i])
  74. self.clfs_.append(clf)
  75. return self
  76. def predict(self, X):
  77. if self.binarize:
  78. X = (X > 0).astype(np.float)
  79. decisions = np.zeros((X.shape[0], self.label_encoder.classes_.shape[0]))
  80. for i in range(len(self.label_encoder.classes_)):
  81. X_i = X.multiply(self.ratios_[i])
  82. decisions[:, i] = self.clfs_[i].decision_function(X_i)
  83. return self.label_encoder.inverse_transform(decisions, threshold=0)
  84. class Objective:
  85. def __init__(self, df, kfold_params):
  86. self.kf = KFold(**kfold_params)
  87. self.df = df
  88. self.tokenizer = make_tokenizer(Tokenizer.from_file(TOKENIZER_PATH))
  89. def __call__(self, trial):
  90. tfidf_params = {
  91. "min_df": trial.suggest_int("tfidf__min_df", *SEARCH_SPACE["tfidf_min_df"]),
  92. "max_df": trial.suggest_loguniform("tfidf__max_df", *SEARCH_SPACE["tfidf_max_df"]),
  93. "smooth_idf": True,
  94. "ngram_range": (1, 2),
  95. "tokenizer": self.tokenizer,
  96. }
  97. code_blocks_tfidf = tfidf_fit_transform(self.df[CODE_COLUMN], tfidf_params)
  98. X, y = code_blocks_tfidf, self.df[TARGET_COLUMN].values
  99. svm_params = {
  100. "C": trial.suggest_loguniform("svm__C", *SEARCH_SPACE["svm_c"]),
  101. "random_state": RANDOM_STATE,
  102. "max_iter": MAX_ITER,
  103. }
  104. alpha = trial.suggest_loguniform("nbsvc__alpha", *SEARCH_SPACE["nbsvc_alpha"])
  105. is_binarized = trial.suggest_categorical("nbsvc__binarize", SEARCH_SPACE["nbsvc_binarize"])
  106. clf = NBSVC(alpha, svm_params, is_binarized)
  107. f1_mean, _ = cross_val_scores(self.kf, clf, X, y)
  108. return f1_mean
  109. def select_hyperparams(df, kfold_params, tfidf_path, model_path):
  110. """
  111. Uses optuna to find hyperparams that maximize F1 score
  112. :param df: labelled dataset
  113. :param kfold_params: parameters for sklearn's KFold
  114. :param tfidf_dir: where to save trained tf-idf
  115. :return: dict with parameters and metrics
  116. """
  117. study = optuna.create_study(direction="maximize", study_name="nb-svm", sampler=optuna.samplers.TPESampler())
  118. objective = Objective(df, kfold_params)
  119. study.optimize(objective, n_trials=N_TRIALS)
  120. best_tfidf_params = {
  121. "smooth_idf": True,
  122. "ngram_range": (1, 2),
  123. "tokenizer": make_tokenizer(Tokenizer.from_file(TOKENIZER_PATH))
  124. }
  125. best_svm_params = {
  126. "random_state": RANDOM_STATE,
  127. "max_iter": MAX_ITER,
  128. }
  129. best_nb_params = dict()
  130. for key, value in study.best_params.items():
  131. model_name, param_name = key.split("__")
  132. if model_name == "tfidf":
  133. best_tfidf_params[param_name] = value
  134. elif model_name == "svm":
  135. best_svm_params[param_name] = value
  136. elif model_name == "nbsvc":
  137. best_nb_params[param_name] = value
  138. code_blocks_tfidf = tfidf_fit_transform(df[CODE_COLUMN], best_tfidf_params)
  139. X, y = code_blocks_tfidf, df[TARGET_COLUMN].values
  140. clf = NBSVC(best_nb_params["alpha"], best_svm_params)
  141. f1_mean, accuracy_mean = cross_val_scores(objective.kf, clf, X, y)
  142. clf.fit(X, y)
  143. pickle.dump(clf, open(model_path, "wb"))
  144. metrics = dict(test_f1_score=f1_mean, test_accuracy=accuracy_mean)
  145. best_tfidf_params["tokenizer"] = "BPE"
  146. best_svm_params["kernel"] = "linear"
  147. best_model_params = {
  148. "svc": best_svm_params,
  149. "nb": best_nb_params,
  150. }
  151. return best_tfidf_params, best_model_params, metrics
  152. if __name__ == "__main__":
  153. df = load_data(DATASET_PATH)
  154. print(df.columns)
  155. nrows = df.shape[0]
  156. print("loaded")
  157. kfold_params = {
  158. "n_splits": 10,
  159. "random_state": RANDOM_STATE,
  160. "shuffle": True,
  161. }
  162. data_meta = {
  163. "DATASET_PATH": DATASET_PATH,
  164. "model": MODEL_DIR,
  165. "script_dir": __file__,
  166. }
  167. metrics_path = os.path.join(EXPERIMENT_DATA_PATH, "metrics.csv")
  168. params_path = os.path.join(EXPERIMENT_DATA_PATH, "params.yml")
  169. with dagshub.dagshub_logger(metrics_path=metrics_path, hparams_path=params_path) as logger:
  170. print("selecting hyperparameters")
  171. tfidf_params, model_params, metrics = select_hyperparams(df, kfold_params, TFIDF_DIR, MODEL_DIR)
  172. print("logging the results")
  173. logger.log_hyperparams({"data": data_meta})
  174. logger.log_hyperparams({"tfidf": tfidf_params})
  175. logger.log_hyperparams({"model": model_params})
  176. logger.log_hyperparams({"kfold": kfold_params})
  177. logger.log_metrics(metrics)
  178. print("finished")
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...