Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

svm_train_rff_pca.py 8.0 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  1. import argparse
  2. import os
  3. import pickle
  4. import sys
  5. import dagshub
  6. import numpy as np
  7. import optuna
  8. import pandas as pd
  9. from sklearn.metrics import accuracy_score, f1_score
  10. from sklearn.model_selection import KFold
  11. from sklearn.base import BaseEstimator, TransformerMixin
  12. from sklearn.decomposition import PCA
  13. from sklearn.svm import SVC
  14. import itertools, random
  15. import scipy as sp
  16. from common.tools import *
  17. parser = argparse.ArgumentParser()
  18. parser.add_argument("GRAPH_VER", help="version of the graph you want regex to label your CSV with", type=str)
  19. parser.add_argument("DATASET_PATH", help="path to your input CSV", type=str)
  20. args = parser.parse_args()
  21. GRAPH_VER = args.GRAPH_VER
  22. DATASET_PATH = args.DATASET_PATH
  23. MODEL_DIR = "../models/linear_svm_regex_graph_v{}.sav".format(GRAPH_VER)
  24. TFIDF_DIR = "../models/tfidf_svm_graph_v{}.pickle".format(GRAPH_VER)
  25. TAGS_TO_PREDICT = get_graph_vertices(GRAPH_VER)
  26. EXPERIMENT_DATA_PATH = ".."
  27. CODE_COLUMN = "code_block"
  28. TARGET_COLUMN = "graph_vertex_id"
  29. RANDOM_STATE = 42
  30. N_TRIALS = 70
  31. MAX_ITER = 10000
  32. HYPERPARAM_SPACE = {
  33. "svm_c": (1e-1, 1e3),
  34. "tfidf_min_df": (1, 50),
  35. "tfidf_max_df": (0.2, 1.0),
  36. "rff_n_features": (10, 1000),
  37. "rff_pca_dim": (5, 100),
  38. "svm_kernel": ["linear", "poly", "rbf"],
  39. "svm_degree": (2, 6), # in case of poly kernel
  40. }
  41. class RFF:
  42. def __init__(self, n_features, pca_dim, random_state):
  43. self.n_features = n_features
  44. self.pca_dim = pca_dim
  45. self.random_state = random_state
  46. def fit(self, X, y):
  47. rng = np.random.default_rng(self.random_state)
  48. if not isinstance(X, np.ndarray):
  49. X = np.array(X.todense())
  50. if self.pca_dim > min(X.shape[0], X.shape[1]):
  51. self.pca_dim = min(X.shape[0], X.shape[1])
  52. self.pca = PCA(n_components=self.pca_dim)
  53. X_trans = self.pca.fit_transform(X)
  54. pairs = rng.choice(range(X_trans.shape[0]), 10000)
  55. pairs2 = rng.choice(range(1, X_trans.shape[0] - 2), 10000)
  56. pairs2 = (pairs + pairs2) % X_trans.shape[0]
  57. if not isinstance(X_trans, np.ndarray):
  58. X_new = np.array((X_trans[pairs] - X_trans[pairs2]).todense())
  59. else:
  60. X_new = X_trans[pairs] - X_trans[pairs2]
  61. square_sums = []
  62. for row in X_new:
  63. s = 0
  64. for elem in row.flatten():
  65. # print(elem)
  66. s += elem ** 2
  67. square_sums.append(s)
  68. sigma2 = np.median(square_sums)
  69. self.w = rng.normal(0, 1.0/np.sqrt(sigma2), size=(self.n_features, X_trans.shape[1]))
  70. self.b = rng.uniform(-np.pi, np.pi, size=(self.n_features, 1))
  71. return self
  72. def transform(self, X):
  73. if not isinstance(X, np.ndarray):
  74. X = np.array(X.todense())
  75. X_trans = self.pca.transform(X)
  76. return (np.cos(self.w @ X_trans.T + self.b)).T
  77. def fit_transform(self, X, y):
  78. self.fit(X, y)
  79. return self.transform(X)
  80. def cross_val_scores(kf, clf, X, y, rff):
  81. f1s = []
  82. accuracies = []
  83. for i, (train_index, test_index) in enumerate(kf.split(X)):
  84. X_train, X_test = X[train_index], X[test_index]
  85. y_train, y_test = y[train_index], y[test_index]
  86. X_train = rff.fit_transform(X_train, y_train)
  87. X_test = rff.transform(X_test)
  88. clf.fit(X_train, y_train)
  89. y_pred = clf.predict(X_test)
  90. f1s.append(f1_score(y_test, y_pred, average="weighted"))
  91. accuracies.append(accuracy_score(y_test, y_pred))
  92. f1s = np.array(f1s)
  93. accuracies = np.array(accuracies)
  94. return f1s.mean(), accuracies.mean()
  95. class Objective:
  96. def __init__(self, df, kfold_params, svm_c, tfidf_min_df, tfidf_max_df, rff_n_features, rff_pca_dim, svm_kernel, svm_degree):
  97. self.kf = KFold(**kfold_params)
  98. self.c_range = svm_c
  99. self.min_df_range = tfidf_min_df
  100. self.max_df_range = tfidf_max_df
  101. self.rff_n_features = rff_n_features
  102. self.rff_pca_dim = rff_pca_dim
  103. self.kernels = svm_kernel
  104. self.poly_degrees = svm_degree
  105. self.df = df
  106. def __call__(self, trial):
  107. tfidf_params = {
  108. "min_df": trial.suggest_int("tfidf__min_df", *self.min_df_range),
  109. "max_df": trial.suggest_loguniform("tfidf__max_df", *self.max_df_range),
  110. "smooth_idf": True,
  111. }
  112. code_blocks_tfidf = tfidf_fit_transform(self.df[CODE_COLUMN], tfidf_params)
  113. X, y = code_blocks_tfidf, self.df[TARGET_COLUMN].values
  114. rff_params = {
  115. "n_features": trial.suggest_int("rff__n_features", *self.rff_n_features),
  116. "pca_dim": trial.suggest_int("rff__pca_dim", *self.rff_pca_dim)
  117. }
  118. rff = RFF(rff_params["n_features"], rff_params["pca_dim"], RANDOM_STATE)
  119. X = rff.fit_transform(X, y)
  120. svm_params = {
  121. "C": trial.suggest_loguniform("svm__C", *self.c_range),
  122. "kernel": trial.suggest_categorical("svm__kernel", self.kernels),
  123. "random_state": RANDOM_STATE,
  124. "max_iter": MAX_ITER,
  125. }
  126. if svm_params["kernel"] == "poly":
  127. svm_params["degree"] = trial.suggest_int("svm__degree", *self.poly_degrees)
  128. clf = SVC(**svm_params)
  129. f1_mean, _ = cross_val_scores(self.kf, clf, X, y, rff)
  130. return f1_mean
  131. def select_hyperparams(df, kfold_params, tfidf_path, model_path):
  132. """
  133. Uses optuna to find hyperparams that maximize F1 score
  134. :param df: labelled dataset
  135. :param kfold_params: parameters for sklearn's KFold
  136. :param tfidf_dir: where to save trained tf-idf
  137. :return: dict with parameters and metrics
  138. """
  139. study = optuna.create_study(direction="maximize", study_name="svm with kernels")
  140. objective = Objective(df, kfold_params, **HYPERPARAM_SPACE)
  141. study.optimize(objective, n_trials=N_TRIALS)
  142. best_tfidf_params = {
  143. "smooth_idf": True,
  144. }
  145. best_svm_params = {
  146. "random_state": RANDOM_STATE,
  147. "max_iter": MAX_ITER,
  148. }
  149. best_rff_params = {
  150. "random_state": RANDOM_STATE,
  151. }
  152. for key, value in study.best_params.items():
  153. model_name, param_name = key.split("__")
  154. if model_name == "tfidf":
  155. best_tfidf_params[param_name] = value
  156. elif model_name == "svm":
  157. best_svm_params[param_name] = value
  158. elif model_name == "rff":
  159. best_rff_params[param_name] = value
  160. code_blocks_tfidf = tfidf_fit_transform(df[CODE_COLUMN], best_tfidf_params, tfidf_path)
  161. X, y = code_blocks_tfidf, df[TARGET_COLUMN].values
  162. rff = RFF(best_rff_params["n_features"], best_rff_params["pca_dim"], RANDOM_STATE)
  163. clf = SVC(**best_svm_params)
  164. f1_mean, accuracy_mean = cross_val_scores(objective.kf, clf, X, y, rff)
  165. X = rff.fit_transform(X, y)
  166. clf.fit(X, y)
  167. pickle.dump(clf, open(model_path, "wb"))
  168. metrics = dict(test_f1_score=f1_mean, test_accuracy=accuracy_mean)
  169. return best_tfidf_params, best_svm_params, best_rff_params, metrics
  170. if __name__ == "__main__":
  171. df = load_data(DATASET_PATH)
  172. print(df.columns)
  173. nrows = df.shape[0]
  174. print("loaded")
  175. kfold_params = {
  176. "n_splits": 10,
  177. "random_state": RANDOM_STATE,
  178. "shuffle": True,
  179. }
  180. data_meta = {
  181. "DATASET_PATH": DATASET_PATH,
  182. "nrows": nrows,
  183. "label": TAGS_TO_PREDICT,
  184. "model": MODEL_DIR,
  185. "script_dir": __file__,
  186. }
  187. metrics_path = os.path.join(EXPERIMENT_DATA_PATH, "metrics.csv")
  188. params_path = os.path.join(EXPERIMENT_DATA_PATH, "params.yml")
  189. with dagshub.dagshub_logger(metrics_path=metrics_path, hparams_path=params_path) as logger:
  190. print("selecting hyperparameters")
  191. tfidf_params, svm_params, rff_params, metrics = select_hyperparams(df, kfold_params, TFIDF_DIR, MODEL_DIR)
  192. print("logging the results")
  193. logger.log_hyperparams({"data": data_meta})
  194. logger.log_hyperparams({"tfidf": tfidf_params})
  195. logger.log_hyperparams({"model": svm_params})
  196. logger.log_hyperparams({"kfold": kfold_params})
  197. logger.log_hyperparams({"rff": rff_params})
  198. logger.log_metrics(metrics)
  199. print("finished")
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...